

MATHEMATICS

5 points:
Consider an infinite 3-dimensional cubic lattice with black nodes at the vertices of the cubes and
in the center of every face and white nodes on the midpoint of every edge. What is the ratio of
the number of black nodes to white nodes?

Hint: Consider each node in a single cubic cell and think how many cubes share that node.

Answer: 4/3

Solution: Let us consider a single cube and count the number of black nodes to be assigned
to this cube. We have 8 black nodes in vertices of the cube. Each vertex is shared between 8
cubes so the number per given cube is 8/8=1. In addition, we have 6 nodes in the center of
each face with each face shared between two cubes so the number is 6/2=3. Therefore, the
number of black nodes associated with a single cubic cell of the lattice is 8/8+6/2=4.
Analogously, the number of white nodes is 12/4=3 (12 edges, each shared between 4 cubes).
Now we easily compute the ratio of black nodes to white nodes 4/3.

10 points:
A cube with an integer side n is divided using barriers into 1x1x1 cubes. How many barriers do
you need to break down in order to be able to get from any 1x1x1 cube to the edge?
(A single barrier is one face of a 1x1x1 cube)

Hint: Find out how the number of disconnected domains changes when one breaks an internal
barrier.

Answer: (n)− 2 3

Solution: Let us remove all outside faces of the large cube. As a result we obtain (n)− 2 3 + 1
disconnected parts of space (the outside of the cube plus all insides of remaining 1x1x1 cubes).
Assume that the necessary number of barriers has been broken and one can get to the edge of
the large cube from inside any of 1x1x1 cubes. As a result with outside faces still removed we
obtain a single fully connected domain (one can get from any point of the space to any point
without crossing a barrier. Breaking one barrier always decreases the number of connected
components by 1 or 0. It means that to go from components to 1 component one(n)− 2 3 + 1
needs to break at least barriers.(n)− 2 3
It is easy to show that this minimum can be achieved. Indeed, let us break all bottom sides of

internal cubes. This way one can reach the bottom face of a big cube from any small(n)− 2 3
cube.

 PHYSICS

5 points: An SUV weighing 2000 kg and moving with a speed of 15 m/s fails to stop at a
stop sign on an intersection. It hits a sedan weighing 1000 kg and moving in a perpendicular
direction at a speed of 21 m/s. The collision is completely inelastic: cars stick and continue
moving together. How far from the collision point will they come to rest? The coefficient of kinetic
friction between the rubber tires and the asphalt is (assume that both drivers were .7μ = 0
applying brakes at the moment of the collision).

Hint: Only momentum is conserved in inelastic collision. However, work & energy
consideration may be useful to find the stoppage path.

Answer: 0mL =
2μ(m +m) g1 2

2
(m v) +(m v)1 1

2
2 2

2

= 4

Solution: Kinetic energy of both cars right after the collision is here and K = P 2

2(m +m)1 2
 m1 m2

are their respective masses, and is their toptal momentum which is conserved at theP

collisions, i.e. .m v) m v)P 2 = P x
2

+ P y
2 = (1 1

2 + (2 2
2

The stoppage distance can be found by noting that the work by force of friction should bring L
the kinetic energy to zero:

. Therefore,(m)gLμ 1 + m2 = K = 2(m +m)1 2

(m v) +(m v)1 1
2

2 2
2

0mL =
2μ(m +m) g1 2

2
(m v) +(m v)1 1

2
2 2

2

= 4

10 points: A sedan of mass m collides with an SUV of mass M that stopped at an
intersection. The collision between the cars is neither purely elastic nor inelastic. The SUV is
pushed forward by distance D, while the sedan comes to a stop after moving by distance d<D
from the collision point, in the same direction. What was the speed of the sedan prior to the
collision? The coefficient of kinetic friction between the rubber tires and the asphalt is (both μ
drivers were applying brakes at the moment of the collision).

Hint: Regardless of the type of collision, momentum is conserved. All you need is to find
speeds/momenta of both vehicles after the collision.

Answer: v = √2μgd 1(+ m

M√D/d)

Solution: Similar to the 5 pt problem, we can relate stoppage distance to speed after the
collision:

 and μgd v1
2 = 2 μgD v2

2 = 2
The initial speed of the sedan can be found by using the conservation of momentum:

 v = m
mv +Mv1 2 = √2μgd 1(+ m

M√D/d)

CHEMISTRY

This month, the topic is: Dynamic equilibrium in Chemistry.
IMPORTANT! In this PoM season, we do an experiment: each month, an online lecture will be
given. This lecture may be helpful for those who wants to solve Chemistry PoMs, although it is
not supposed to provide direct hints.
This month’s lecture takes place at 10:30 am on Sunday, September 27. The Zoom invitation is
below:

https://us02web.zoom.us/j/4817690592?pwd=T2djSjRETEpDSHFZdWJpYlBTYzdjQT09
Meeting ID: 481 769 0592
Passcode: 879615

The recording is available in our YouTube channel: https://youtu.be/DAfGczRsgrs

During and after the lecture, you will have an opportunity to ask general questions on the topic.
The lecture will be recorded, and it can be found at our youtube channel.

In addition, the solutions will be announced via Zoom too, so you will be able to ask questions if
you want. The exact date will be announced later. Check our website for that.

5 points:

When you add a powdered soluble substance, e.g. table salt, to water, the solid dissolves, but if
you add too much of it, a saturated solution forms, and the rest of the solid does not dissolve
anymore. If you leave that mixture in a closed vessel for several weeks, you will see that,
although the total amount of the solid hasn’t changed, there is a significant change in the
particles' appearance: instead of a large number of small grains, one or several large crystals
form. Why does it happen?

Hint:
Actually, the hint can be found in the September PoM lecture, which is available here:
https://drive.google.com/file/d/1-wlgrcUTrFdGRRfqZjltCUVt6nVzXb-u/view?usp=sharing
If you cannot open it, please, send a request to Mark Lukin (mark.lukin@stonybrook.edu). The
part where Mark tells about evaporation from concave and convex surfaces is the most relevant
to the problem.

https://drive.google.com/file/d/1-wlgrcUTrFdGRRfqZjltCUVt6nVzXb-u/view?usp=sharing
mailto:mark.lukin@stonybrook.edu

Answer:

When some solid and its saturated solution are at equilibrium, this state is called a “dynamic
equilibrium”, because the apparent cessation is an equilibrium between two processes,
dissolution and precipitation. These processes never stop, but, since their speed is equal, we
see no changes.

This simple picture works fine when the surface of the solid is flat. When we consider actual
solids, the situation is more complex. Indeed, the rate of dissolution depends on how strongly the
molecules of the solid are being held by its neighbours. This parameter depends on the number
of neighbours. Obviously, the molecules situated at the very tip of the crystal’s vertex are
surrounded by a smaller number of neighbours, so they dissolve faster. The molecules (or ions,
for ionic compounds) situated in the middle of crystal’s faces are surrounded by a bigger number
of neighbours, so they are less likely to escape from the crystal to the solution, and, accordingly,
they are more likely to adsorb molecules (ions) from the solution.

Each crystal, independent of their size, has the same number of vertices, but big crystals have
bigger faces. That means dissolution from faces does not depend on the crystal’s size, but
precipitation (crystallization), which occurs mostly at the plane surface of crystal faces, is faster
for bigger crystals.

That means that, whereas the overall dissolution and crystallization rates are equal at
equilibrium, a local dissolution rate is slightly higher for smaller crystals, and slightly lower for
bigger crystals. Accordingly, a local crystallization rate is higher for larger crystals and lower for
smaller crystals,
so big crystals will be growing bigger and bigger, whereas smaller crystals will become smaller
and smaller, and finally disappear.

10 points:
Hardness of fresh or tap water is a property that has no relation to real hardness. It indicates the
amount of dissolved salts, usually hydrocarbons and sulfates of calcium and magnesium. When
tap water is boiled or heated, calcium salts may precipitate in a form of calcium carbonate
(CaCO3) or, more rarely, calcium sulfate (CaSO4). That results in formation of solid deposits on
the inner surface of teapots, boilers, and other equipment. For removal of carbonate deposits, a
treatment with some acid, such as acetic acid, dilute hydrochloric acid, or citric acid, can be
helpful, because solid calcium carbonate participates in an exchange reaction:

CaCO3 + 2HCl ⇄ CaCl2 + H2CO3

One of the products, carbonic acid, is unstable, it decomposes into water and carbon dioxide (a
gas), which escapes to the atmosphere, so the equilibrium shifts to the right side, and all
insoluble calcium carbonate converts to the soluble calcium chloride (CaCl2).
That approach does not work for calcium sulfate deposits. Sulfuric acid is not volatile, so if you
add HCl to calcium sulfate:

CaSO4 + 2HCl ⇄ CaCl2 + H2SO4

sulfuric acid stays in the solution, and the equilibrium remains shifted to the left side, so no
conversion of low soluble calcium sulfate into soluble calcium chloride occurs.

Propose the process that would allow conversion of calcium sulfate deposits into something
soluble. How many steps are needed for that?

Hint:
Actually, the hint can be found in the September PoM lecture, which is available here:
https://drive.google.com/file/d/1-wlgrcUTrFdGRRfqZjltCUVt6nVzXb-u/view?usp=sharing
If you cannot open it, please, send a request to Mark Lukin (mark.lukin@stonybrook.edu). The
part where Mark tells about a solubility product is the most relevant to the problem.

Answer:

Calcium sulfate, as well as any ionic solid (a.k.a. salt), partially dissolves in water, and this
process is accompanied by its dissociation.

CaSO4 ⇄ Ca2+ + SO4

2-

At equilibrium, the concentration of calcium sulfate ions is described by the parameter called
solubility product, which is equal to

SP = [Ca2+][SO4
2-]

In this formula, square brackets denote the actual concentration of each ion (the square bracket
notation is very common in chemical kinetics and thermodynamics, so it is useful to remember
it).
From this formula, it is easy to see that the higher SP is, the greater the solid’s solubility. For
calcium sulfate, SP is 4.93 × 10−5 mol2L−2.
Another solid, calcium carbonate, is less soluble, and its SP is 3.3×10−9 mol2L−2.

Consider a situation when we take a solid calcium sulfate, add water, and wait until an
equilibrium is achieved. At equilibrium, the concentration of calcium ions will be equal to the
square root of calcium sulfate’s SP, i.e. 7× 10−3 M. Now, let’s add add some amount of carbonate

https://drive.google.com/file/d/1-wlgrcUTrFdGRRfqZjltCUVt6nVzXb-u/view?usp=sharing
mailto:mark.lukin@stonybrook.edu

ions, for example, 1 M of calcium carbonate (CaCO3). This solid dissociates onto calcium ions
and carbonate ions, so the concentration of carbonate ions becomes 1M. Taking into account
that calcium carbonate (chalk, or limestone) has low solubility (its SP is 3.3×10−9 mol2L−2),
calcium ions will interact with carbonate ions, and calcium carbonate will start to precipitate from
the solution:

Ca2+ + CO3
2- ⇄ CaCO3

How will the concentration of calcium ions drop in that process? Taking into account that SP is a
product of [Ca2+] and [CO3

2-], and that [CO3
2-] is equal to 1M, the concentration of calcium ions

becomes:

[Ca2+] = SPCaCO3/[CO3
2-] = 3.3×10−9/1 = 3.3×10−9

Keeping in mind that the solid calcium sulfate is still present, and it is supposed to be at
equilibrium with the solution, it continues to dissolve, but that dissolution process is not
compensated by precipitation of CaSO4, because concentration of calcium ion dropped
dramatically (now it is 3.3×10−9, not 7× 10−3). That means, in the presence of high concentration
of carbonate ions, the process of precipitation of the solid calcium sulfate is incapable of
compensating its dissolution, so CaSO4 starts to dissolve, and CaCO3 precipitates instead.
Similar to the 5pt problem, this process will last until all CaSO4 is converted into CaCO3 (of
course, if a large excess of carbonate ions, for example, high concentration of sodium,
potassium or ammonium carbonate, is taken).

What practical consequence all of that has? In contrast to calcium sulfate, calcium carbonate
reacts with acids (such as HCl), and soluble calcium salts form. That allows us to easily remove
calcium sulfate depositions by treatment of them with a solution of some soluble carbonate,
rinsing the newly formed solid with water, and treating it with some acid.

Next Sunday, Oct 18, at 10:30, more detailed explanation will be provided during the Zoom
conference:
https://us02web.zoom.us/j/4817690592?pwd=T2djSjRETEpDSHFZdWJpYlBTYzdjQT09
Meeting ID: 481 769 0592
Passcode: 879615

During that Zoom conference, you will be able to ask your questions and discuss your own
solutions.

BIOLOGY

5 points:
Groups of organisms often possess what is known as “collective intelligence,” in which flocks
and swarms are able to make optimal “decisions” as a group that far exceed the capabilities of
any one of its members. Assuming that ants are identical, how do they manage collective
transport of objects several times their sizes--so large, in fact, that most ants are incapable of
seeing where they’re going? How would behavior change as a function of the size of the
swarm?

Answer:
There are two types of ants: those at the head of the motion who can see, and the rest who
cannot see. The ones who can’t see react by reinforcing the push and pull of his neighbors,
“going with the flow,” and therefore acting dependently. The more ants in the group, the
stronger the signal, and therefore the more cooperatively they move--thus small groups of ants
transport in a “disordered phase” way while large groups of ants move in an “ordered phase.”
The very few number of ants at the head of the motion steer, and thus provide hugely
disproportionate influence on the group. The group cycles, with the ones at the front moving to
the back, and so forth, so what matters is not the leadership of the specific ant, per se, but
rather his role within the geometry of the transport.

FROM: https://www.nature.com/articles/s41567-018-0107-y

“Anyone who has moved furniture together with friends will appreciate that cooperative transport
requires some non-trivial communication. Yet ants are adept at collectively moving objects
several times their size. How they do so has long been a subject of research, but recent
advances have suggested that this communication occurs through the forces the ants exert on
the load.”

“Ants who take part in collective transport participate in a large-scale process whereby their
individual actions act to coordinate them into a single, cooperative entity. This coordination is
achieved via physical interactions in which a carrier ant senses the force generated by the entire
carrying group and reacts by aligning its pull with this collective ‘opinion’.”

“The carrying ant groups exhibit the necessary ingredients to support a phase transition in a
many-body system. Importantly, group size serves as a control parameter that transitions the
group between different phases of motion. Small carrying teams display a disordered phase,

https://www.nature.com/articles/s41567-018-0107-y

which is characterized by uncoordinated tug-of-war33, whereas large ant groups coordinate into
an ordered phase, characterized by more ballistic motion.”

“The collective behaviour of ants is strongly dictated by physical principles in which ants play the
role of simple coupled particles. Interestingly, this coupled system is maximally responsive to
the complex decisions and information provided by few navigationally competent individuals.”

10 points:

In May 2020, the Environmental Protection Agency EPA approved release of 750 million
genetically engineered mosquitoes in Florida Keys. The mutant mosquito are expected to mate
with local, non-mutant mosquitoes to produce nonviable female offspring, which is expected to
cause nearly complete eradication of the mosquito population.

- What was the reason for introducing the mutation that kills only females, but not males?

- In which chromosome such lethal mutation should be placed to produce a desired effect, and
how all of that works?

- What potential effects (positive and negative) eradication of mosquitoes will have on the
ecosystem? Which species of the Florida Keys ecosystem will be most endangered ?

Answer:

Obviously, genetically engineered mosquitoes cannot literally “kill” other mosquitoes, they can,
potentially, make the whole population non-viable. That can be achieved by introducing some
gene into the population that would decrease the overall survival rate of mosquitoes. The main
technical problem is that any gene that decreases the survival rate is usually removed from the
population, and after several generations, the population will be dominated by non non-modified
organisms, so the effect of introduction of genetically modified mosquitoes vanishes in the next
generation. One possibility to avoid that would be to introduce a female-specific lethal gene into
the population. If the genetic defect is introduced into the male’s genome in such a way that it
does not affect viability of male offspring, but female offspring are non-viable, then mutant males
are not removed from the population. These males remain viable and fertile; however, when
mated to nontransgenic (wild) females, they produce no fertile female. After several
generations, all females become eliminated from the population, and all males carry the

https://www.nature.com/articles/s41567-018-0107-y#ref-CR33

same genetic defect. Since the modified gene is not removed from the population (genetically
modified males are as viable as non-modified ones), this process will last until all mosquitoes
are eradicated.

Where should that genetic modification be introduced? Usually, when we speak about some
genetic defect linked to a sex, the first idea is that that defect is allosomal (i.e. is located in a sex
chromsome). The problem is that that would work for males, who always inherit their
Y-chromosome from the father. In contrast, females have to X-chromosomes, one is matertal,
another is fathernal. That means such an approach would not work in that case.

A solution is to introduce dominant homozygous modification of some gene that causes female
specific lethality (“dominant homozygous” means that both copies of that gene have the same
defect, and the genes are dominant, so the progeny will have the mutant phenotype). For
example, there is a specific element of the gene expression system called Yp3fat-body
enhancer, which activates some genes in female larvae and adults, but not in males. If a
cytotoxic gene is added to one of these genes, that would kill females, but not males. The
latter will be totally healthy, and capable of transferring their genetic defect to the next
generation of mosquitoes.

Main problem with these genetically modified mosquitoes is that the risks have not been
adequately assessed. Potential effects on insect eating birds, or fish eating mosquitoes’
larvae depend on flexibility of food chains in the ecosystem, which are not fully studied.
Arguably, species that are closely related to mosquitoes are at greater risk, because if a full
eradication of mosquitoes will not be achieved (it was reported that in reality about 3% of
female mosquitoes carrying the female specific mutation are still capable of surviving), the
mutant gene will continue to exist in the ecosystem and can be transferred to other species,
which may lead to unpredictable consequences.

LINGUISTICS

5 points:
Some of the following words from a language spoken in Siberia are translated below (in a
random order).

vörny, vörz’yny, vörz’ödny, vörödyštny, vörödny, padmyny, padmödny, lebz’yny, lebny,
gazhödyštny, gazhodny, seiny, seiyštny

to move oneself, to make someone late, to eat a little bit, to move someone, to be late, to move
someone a little, to have fun, to start moving oneself, to start flying

Determine which translation corresponds to which word and translate the rest of the words.
Explain how you reached your conclusion.

Hint:

Solution and Answer:

1. All given words end in -ny, so we can assume that this is a verbal infinitive ending.
2. There are 5 different stems: vör, padmy, leb, gazh, sei.
3. There are 3 suffixes (other than -ny): -öd, -z’y, -yšt, distributed as shown in the table

below:

-ny -z’y-ny -öd-ny -yšt-ny -z’-öd-ny -öd-yšt-ny

vörny vörz’yny vörödny vörz’ödny vörödyštny

padmyny padmödny

lebny lebz’yny

 gazhodny gazhödyštny

seiny seiyštny

4. There seems to be 4 different meanings that can be combined with each other: basic

meaning (to do something oneself, to make someone do something, to start doing
something, to do something a little). The table below summarizes the data:

“oneself” “make
someone”

“start” “a little” “make
someone”+”a little”

move oneself move someone start moving
oneself

 move someone a
little

be late make someone
late

 have fun

 start flying

 eat a little bit

5. From this table, it is easy to deduce that “move oneself” corresponds to vörny (since it’s

the only row with 4 or more words; now, vörz’yny and vörödny correspond to “move
someone” and “start moving”.

6. If we assume that vörz’yny is “to move someone” (and -z’y corresponds to “make
someone”), then “to move someone a little” would be vörz’ödny, so -öd means “a little”,
and we are missing the translation for “to start moving oneself” -- contradiction.

7. Therefore, vörödny is “to move someone” (and -öd corresponds to “make someone”),
vörz’yny is “to start moving” (and -z’y corresponds to “start”), vörz’ödny is “to start
moving someone”, and vörödyštny is “to move someone a little” (and -yšt means “a
little”)

8. Now, padmyny and padmödny correspond to “be late” and “make someone late”. “To
have fun” is gazhodny, “to eat a little” is seiyštny, “to start flying” is lebz’yny. The rest of
the words can be translated as follows: lebny is “to fly”, seiny is “to eat”, gazhödyštny is
“make someone have fun a little”.

10 points:
The phrases below from a language spoken in southeast Asia have the given translations in
random order.

sampeyan murid adhi aku
murid adhi kanca sampeyan
adhi aku kanca murid sampeyan
aku murid kanca sampeyan
adhi aku murid sampeyan

My younger brother is a friend of your student.

You are the student of my younger brother.
the student of the younger brother of your friend
My younger brother is your student.
I’m the student of your friend.

a. Establish the translations of the words and describe the structure of such sentences from
this language. Explain how you reached your answer.

b. According to what you discover, what is another possible translation of the 2nd phrase?

Solution and Answer:

1. Notice that there are only 5 different words used in the original data, so it would be
reasonable to assume that English words like “you, your” and “I, my” correspond to just
one word in this language. We should also assume that “younger brother” corresponds
to just one word. Hence, there are 5 different meanings: (1) I, me, my (2) you, your (3)
younger brother (4) friend (5) student.

2. Let’s create a table for each of the data sentences and each of the translations to
indicate which words are used where.

 1-data 2-data 3-data 4-data 5-data

sampeyan + + + + +

murid + + + + +

adhi + + + +

aku + + + +

kanca + + +

 1-translation 2-translation 3-translation 4-translation 5-translation

I/my + + + +

you/your + + + + +

younger
brother

+ + + +

student + + + + +

friend + + +

3. The word kanca means “friend” since they both occurs in 3 sentences. The words

sampeyan and murid correspond to “you/your” and “student”, but so far it is unclear
which corresponds to which. Therefore, adhi and aku correspond to “I/my” and “younger
brother” (again, unclear which to which).

4. Sentence 3-data has 5 words, and so does 1-translation, so that’s the correct
correspondence.

5. Sentences 1-data and 5-data have the same 4 words, and so do 2-translation and
4-translation (but which corresponds to which is still unclear).

6. Based on that, we have to use guess and check to figure out the right translations. The
only consistent rules can be stated if: 1-data=2-translation, 5-data=4-translation,
2-data=3-translation, 4-data=5-translation, 3-data=1-translation; and
sampeyan=”you/your”, murid=”student”, adhi=”younger brother”, aku=”I/my”,
kanca=”friend”.

7. The order of words is the following: Subject-Object-Verb; the Possessive follows the
Noun.

8. The 2nd sentence is murid adhi kanca sampeyan, which has the following word-for-word
translation: “student younger_brother friend your”, and it can have another translation:
“student is the younger brother of your friend”.

COMPUTER SCIENCE

● Your program should be written in Java or Python-3
● No GUI should be used in your program: eg., easy gui in Python
● All the input and output should be via files with specified in the problem names
● Java programs should be submitted in a file with extension .java; Python-3 programs

should be submitted in a file with extension .py.
No .txt, .dat, .pdf, .doc, .docx, etc. Programs submitted in incorrect format will not
receive any points!

Introduction:

Mark decided to digitize his library. He has n books on his shelf. k counselors volunteered to
help him scan all the books. (You can presume that k <= n). Mark is very particular in the order
the books appear on the shelf at any given moment, and therefore counselors are instructed not
to mix or move the books, and each counselor can only scan a set of consecutive books.

Your program should read the input file input.txt, which consists of 2 rows. The first row contains
space-separated values of n and k. The second row contains n space-separated integers
representing the size of each of the books (i.e., number of pages). Example input file:

10 3

50 100 75 66 350 254 39 111 205 321

You can assume that all books have a positive integer number of pages.

5 points:

Your program should calculate the minimum and maximum number of pages a counselor may
need to scan considering all possible divisions of labor.

The program should produce output file output.txt, which consists of 2 space-separated
numbers - minimum and maximum. For example above, the file will contain:

39 1421

Solution:
Java:
/*

if k == 1 then min and max are the entire collection of the books

if k == 2 then

 min is either the 1st or last book

 max is all the books minus either the 1st or last book

else

 The minimum number of pages is the number of pages in a single smallest book because we can

 isolate the book with partitions on the left and right of it.

 The maximum number of pages is the max sum of pages in n-(k-1)=n-k+1 consecutive books, i.e.

 when k-1 counselors take only 1 book each and the last counselor takes all the rest.

We will calculate these 2 number "on the fly" while scanning the books array once, i.e.

the complexity is O(n).

*/

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.Arrays;

public class Books5 {

 private int[] pages;

 private int k;

 private int mini;

 private int maxi;

 void input() throws Exception {

 BufferedReader reader = new BufferedReader(new FileReader("input.txt"));

 String line = reader.readLine().trim();

 String[] nums = line.split("\\s*[\\s,]\\s*");

 // the following will croak if the elements are not all integers

 int[] numbers = Arrays.stream(nums).map(s ->

 Integer.valueOf(s)).mapToInt(Integer::intValue).toArray();

 // also verify that they all > O

 if(!Arrays.stream(numbers).allMatch(i -> i > 0))

 throw new AssertionError("all numbers must be positive");

 if(numbers.length != 2)

 throw new Exception("1st line must have 2 integers");

 int n = numbers[0];

 k = numbers[1];

 if(k > n)

 throw new Exception("k > n");

 line = reader.readLine().trim();

 nums = line.split("\\s*[\\s,]\\s*");

 if(nums.length != n)

 throw new Exception("2nd line must have n integers");

 pages = Arrays.stream(nums).map(s ->

 Integer.valueOf(s)).mapToInt(Integer::intValue).toArray();

 if(!Arrays.stream(pages).allMatch(i -> i > 0))

 throw new AssertionError("all numbers must be positive");

 }

 void calc() {

 if(k == 1) { // a lonely counselor gets all the work

 mini = Arrays.stream(pages).sum();

 maxi = mini;

 }

 else if(k == 2) {

 mini = Math.min(pages[0], pages[pages.length-1]);

 maxi = Arrays.stream(pages).sum();

 maxi = Math.max(maxi-pages[0], maxi-pages[pages.length-1]);

 }

 else {

 int n = pages.length;

 mini = Integer.MAX_VALUE;

 maxi = 0;

 int m = 0; // number of books in "maxi"

 int s = 0; // running sum

 for(int i=0; i<n; i++) { // go book by book

 int cur_pages = pages[i];

 if(cur_pages < mini)

 mini = cur_pages;

 if(m < n-k+1) {

 m++;

 maxi += cur_pages;

 s = maxi;

 }

 else {

 s = s - pages[i-m] + cur_pages; // by this time m = n-k+1

 if(s > maxi)

 maxi = s;

 }

 }

 }

 }

 void output() throws Exception {

 System.out.print(String.format("%d %d\n", mini, maxi));

 try(FileWriter out = new FileWriter("output.txt")) {

 out.write(String.format("%d %d\n", mini, maxi));

 }

 }

 public static void main(String[] args) throws Exception {

 Books5 books = new Books5();

 books.input();

 System.out.println(Arrays.toString(books.pages));

 books.calc();

 books.output();

 System.out.println("end.");

 }

}

Python:
"""

if k == 1 then min and max are the entire collection of the books

if k == 2 then

 min is either the 1st or last book

 max is all the books minus either the 1st or last book

else

 The minimum number of pages is the number of pages in a single smallest book because we can

 isolate the book with partitions on the left and right of it.

 The maximum number of pages is the max sum of pages in n-(k-1)=n-k+1 consecutive books, i.e.

 when k-1 counselors take only 1 book each and the last counselor takes all the rest.

We will calculate these 2 number "on the fly" while scanning the books array once, i.e.

the complexity is O(n).

"""

import re

read and parse input file

with open("input.txt") as in_file:

 line = in_file.readline()

 numbers_str = re.split(r"[\s,]\s*", line.strip()) # split by either white spaces or commas

 # the following will croak if the elements are not all integers

 numbers = [int(x) for x in numbers_str]

 if len(numbers) != 2:

 raise Exception("first line must have 2 numbers")

 n = numbers[0]

 k = numbers[1]

 if n<=0 or k<=0 or k>n:

 raise Exception("invalid input")

 line = in_file.readline()

 numbers_str = re.split(r"[\s,]\s*", line.strip()) # split by either white spaces or commas

 # the following will croak if the elements are not all integers

 pages = [int(x) for x in numbers_str]

 if len(pages) != n:

 raise Exception("number of books must be n")

 if len([x for x in pages if x<=0]) > 0:

 raise Exception("number of pages must be > 0 in a book")

print(pages)

if k == 1: # a lonely counselor gets all the work

 mini = sum(pages)

 maxi = mini

elif k == 2:

 mini = min(pages[0], pages[-1])

 maxi = max(sum(pages[1:]), sum(pages[0:-1]))

else:

 mini = float('inf')

 maxi = 0

 m = 0 # number of books in "maxi"

 s = 0 # running sum

 for i in range(len(pages)): # go book by book

 cur_pages = pages[i]

 if cur_pages < mini:

 mini = cur_pages

 if m < n-k+1:

 m += 1

 maxi += cur_pages

 s = maxi

 else:

 s = s - pages[i-m] + cur_pages # by this time m = n-k+1

 if s > maxi:

 maxi = s

print(f"{mini} {maxi}")

with open("output.txt", "w") as out_file:

 out_file.writelines(f"{mini} {maxi}\n")

print("end.")

10 points:
Your program should find the fairest division of labor (partition of the shelf into k sets of
consecutive books). Fairest is defined as a division with the minimum of the total number of
pages the busiest counselor (i.e. the counselor who will have to scan the most of the pages) will
have to scan.

The program should produce output file output.txt, which consists of k lines. Each line i will start
with the number of pages the i-th counselor has to scan, followed by a space, dash, space and
then space-separated list of book sizes comprising that total.
For example, for an input file:

6 2

10 20 30 40 50 60

the output file should contain:

100 - 10 20 30 40

110 - 50 60

Solution:
Java:
/*

The explanation is given by

Steven Skiena "The Linear Partition Problem"

https://www3.cs.stonybrook.edu/~algorith/video-lectures/1997/lecture11.pdf

*/

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import java.util.stream.Collectors;

public class Books10 {

 static int INF = Integer.MAX_VALUE;

 private int[] pages;

 private int k;

 void input() throws Exception {

 BufferedReader reader = new BufferedReader(new FileReader("input.txt"));

 String line = reader.readLine().trim();

 String[] nums = line.split("\\s*[\\s,]\\s*");

 // the following will croak if the elements are not all integers

 int[] numbers = Arrays.stream(nums).map(s ->

 Integer.valueOf(s)).mapToInt(Integer::intValue).toArray();

 // also verify that they all > O

 if(!Arrays.stream(numbers).allMatch(i -> i > 0))

 throw new AssertionError("all numbers must be positive");

 if(numbers.length != 2)

 throw new Exception("1st line must have 2 integers");

 int n = numbers[0];

 k = numbers[1];

 if(k > n)

 throw new Exception("k > n");

 line = reader.readLine().trim();

 nums = line.split("\\s*[\\s,]\\s*");

 if(nums.length != n)

 throw new Exception("2nd line must have n integers");

 pages = Arrays.stream(nums).map(s ->

 Integer.valueOf(s)).mapToInt(Integer::intValue).toArray();

 if(!Arrays.stream(pages).allMatch(i -> i > 0))

 throw new AssertionError("all numbers must be positive");

 }

 static int[][] linearPartition(int[] a, int k) {

 int n = a.length;

 int[][] table = new int[n][k];

 int[][] solution = new int[n-1][k-1];

 // initialize

 table[0][0] = a[0];

 // compute prefix sums

 for(int i=1; i<n; i++) {

 table[i][0] = a[i] + table[i-1][0];

 }

 // initialize boundary condition

 for(int j=1; j<k; j++) {

 table[0][j] = a[0];

 }

 // fill the rest

 for(int i=1; i<n; i++) {

 for(int j=1; j<k; j++) {

 int current_min = -1;

 int minx = INF;

 for(int x=0; x<i; x++) {

 int s = Math.max(table[x][j-1], table[i][0] - table[x][0]);

 if(current_min < 0 || s < current_min) {

 current_min = s;

 minx = x;

 }

 }

 table[i][j] = current_min;

 solution[i-1][j-1] = minx;

 }

 }

 return solution;

 }

 static List<List<Integer>> reconstructPartition(int[] a, int[][] solution, int k) {

 List<List<Integer>> result = new ArrayList<>();

 int n = solution.length;

 k = k - 2;

 while(k >= 0) {

 List<Integer> inner = new ArrayList<>();

 for(int i=solution[n-1][k]+1; i<n+1; i++) {

 inner.add(a[i]);

 }

 result.add(inner);

 n = solution[n-1][k];

 k--;

 }

 List<Integer> inner = new ArrayList<>();

 for(int i=0; i<n+1; i++) {

 inner.add(a[i]);

 }

 result.add(inner);

 Collections.reverse(result);

 return result;

 }

 void output(List<List<Integer>> res) throws Exception {

 try(FileWriter out = new FileWriter("output.txt")) {

 for(List<Integer> row : res) {

 out.write(String.format("%d - %s\n", row.stream().mapToInt(i -> i.intValue()).sum(),

 row.stream().map(String::valueOf).collect(Collectors.joining(" "))));

 }

 }

 }

 public static void main(String[] args) throws Exception {

 Books10 books = new Books10();

 books.input();

 System.out.println(Arrays.toString(books.pages));

 int[][] solution = linearPartition(books.pages, books.k);

 List<List<Integer>> res = reconstructPartition(books.pages, solution, books.k);

 System.out.println(res);

 books.output(res);

 System.out.println("end.");

 }

}

Python:
"""

The explanation is given by

Steven Skiena "The Linear Partition Problem"

https://www3.cs.stonybrook.edu/~algorith/video-lectures/1997/lecture11.pdf

"""

import re

from operator import itemgetter

read and parse input file

def input():

 with open("input.txt") as in_file:

 line = in_file.readline()

 numbers_str = re.split(r"[\s,]\s*", line.strip()) # split by either white spaces or commas

 # the following will croak if the elements are not all integers

 numbers = [int(x) for x in numbers_str]

 if len(numbers) != 2:

 raise Exception("first line must have 2 numbers")

 n = numbers[0]

 k = numbers[1]

 if n<=0 or k<=0 or k>n:

 raise Exception("invalid input")

 line = in_file.readline()

 numbers_str = re.split(r"[\s,]\s*", line.strip()) # split by either white spaces or commas

 # the following will croak if the elements are not all integers

 pages = [int(x) for x in numbers_str]

 if len(pages) != n:

 raise Exception("number of books must be n")

 if len([x for x in pages if x<=0]) > 0:

 raise Exception("number of pages must be > 0 in a book")

 return (pages, k)

def linear_partition(a, k):

 if k <= 0:

 return []

 n = len(a) - 1

 if k > n:

 return map(lambda x: [x], a)

 table, solution = linear_partition_table(a, k)

 k, ans = k-2, []

 while k >= 0:

 ans = [[a[i] for i in range(solution[n-1][k]+1, n+1)]] + ans

 n, k = solution[n-1][k], k-1

 return [[a[i] for i in range(0, n+1)]] + ans

def linear_partition_table(a, k):

 n = len(a)

 table = [[0] * k for x in range(n)]

 solution = [[0] * (k-1) for x in range(n-1)]

 for i in range(n):

 table[i][0] = a[i] + (table[i-1][0] if i else 0) # prefix sums

 for j in range(k):

 table[0][j] = a[0] # boundary condition

 for i in range(1, n):

 for j in range(1, k):

 table[i][j], solution[i-1][j-1] = min(((max(table[x][j-1], table[i][0]-table[x][0]), x)

for x in range(i)), key=itemgetter(0))

 return (table, solution)

def output(a):

 with open("output.txt", "w") as out_file:

 for i in range(len(a)):

 out_file.write(f"{sum(a[i])} - {' '.join(str(x) for x in a[i])}\n")

pages, k = input()

print(pages)

a = linear_partition(pages, k)

print(a)

output(a)

print("end.")

