

MATHEMATICS

5 points:
Sophia said she knew a natural number such that the product of all of its divisors including 1
and the number itself is a number ending with exactly 42 zeros. Can she be right? If yes, give
an example of such a number. If no, give proof that such numbers do not exist.

Hint: One gets 10 by multiplying 2 and 5.

Answer: yes

Solution: For example, the number has exactly 42 divisors having 5 as a factor:5 × 241

, , ,..., . Therefore, the product of these divisors ends with 42 zeros.5 × 20 5 × 2 5 × 22 5 × 241
Other divisors do not have 5 as a factor and, thus, the product of all divisors of also ends5 × 241
with exactly 42 zeros. Can you think of at least one more number with the same property?

10 points:
You are performing the following magic trick. You step out of the room and one of the spectators
writes down a sequence of 101 digits on a blackboard. Your assistant, who is present in the
room, then covers two subsequent digits in the sequence with a black square. After that you
enter the room and, without communicating with anybody, brilliantly guess the two covered
digits in the correct order. To be sure that the trick will work 100% of the time you gave precise
instructions to your assistant before the show. What could those instructions have been?

Hint: By covering digits at places N and N+1 the assistant communicates the number N to the
magician. The number N is a two-digit number and theoretically can be sufficient to encode two
covered digits.

Answer: see the solution

Solution: The only information the assistant communicates to the magician by covering
digits at places N and N+1 is the number N. Let us count all digits of the trick starting from 00
and ending at 100, so that can be from 00 to 99. The two-digit number , whereN 0 m N = 1 + n

 are digits 0 to 9.,m n
Here is how the trick might work. The assistant can compute (quickly) the sum of all digits
standing on even places and find the last digit of the result . Then the assistant repeats thism
for all digits standing on odd places and find the last digit of the result . The assistant thenn
covers the digits and . The magician then knows and and can restore0 m N = 1 + n N + 1 m n
the covered digits by computing the sum of all digits on odd places and restoring the covered
digits occupying the odd place and then doing the same for digits on even places.

 PHYSICS

5 points: Power 40 hp (horse-powers) is needed to drive a car at constant speed 60 mph on
a horizontal road. How much power is needed to drive the same car at speed 90 mph, on the
same road? Assume that the energy efficiency of the car stays the same and that most of the
work done by the engine is against air drag.
(To get background information about drag force, check Wiki, or any other source, e.g.
https://en.wikipedia.org/wiki/Drag_equation)
Hint: Note that power = force times speed.
Answer: 135 hp

Solution: Note that power = force speed, and drag force is proportional to speed×
squared, . Therefore, power is proportional to so it should be multiplied by factorv2 v3

. This gives .7/8(90/60)3 = 2 0hp 7/8 35 hp 4 × 2 = 1

10 points: Rotor (propeller) of Robinson R22 helicopter needs to spin at 600 RPMs
(revolutions per minute) for it to lift from the ground. Suppose that you want to build a similar
helicopter for use on Mars. The problem is, the density of the atmosphere on Mars is only 2% of
that on Earth. Fortunately, gravitation acceleration there is , rather than our . .7m/s 3 2 .8m/s g = 9 2
Engineers from your team managed to cut the mass of the helicopter by a factor of 2, leaving all
its dimensions the same. Estimate how fast the rotor should spin for this helicopter to be able
to lift from the surface of Mars.

Hint: gravity force should be balanced by lift force of the propeller. The latter is proportional to
speed of rotation squared.

Answer: about 1840 RPM

Solution: Gravity force should be balanced by the lift force acting on the rotor. The latter is
proportional to the angular speed squared, and to density of the atmosphere (since all
dimensiones of the helicopter are the same). This means that

 g onst ρ ϖ m = c air
2

Hence

onst 00 RPM 840 RPM ϖ = c √ mg/ ρair = 6 √0.5 / 0.02 (3.7/9.8) ≈ 1

https://en.wikipedia.org/wiki/Drag_equation
https://en.wikipedia.org/wiki/Drag_equation

CHEMISTRY

This month, the topic is: Electrochemistry
IMPORTANT! In this PoM season, we do an experiment: each month, an online lecture will be
given. This lecture may be helpful for those who want to solve Chemistry PoMs, although it is not
supposed to provide direct hints.
This month, the lecture will be on Nov 22 morning. At 11:00, a Zoom conference will start where
October PoM solutions will be discussed. After that, approximately at 11:30, the lecture starts.
To join the Zoom conference, use this link:
https://us02web.zoom.us/j/4817690592?pwd=T2djSjRETEpDSHFZdWJpYlBTYzdjQT09
Meeting ID: 481 769 0592
Passcode: 879615
If you are unable to connect, email to mark.lukin@gmail.com
The lecture recording is available in our youtube channel:
https://www.youtube.com/channel/UC7e5BDljoP5619Ula2fF4zQ/

5 points:

To test their ability to survive in the wild, a group of students decided to take a five-day hike
through the Adirondack Mountains using only a printed map. As a precaution, they took only
one smartphone, but agreed to use it just in a case of emergency. At the end of the fifth day, the
guys realized that they were lost. They took out a smartphone, but it was completely
discharged. They had a car charger, but it was useless because there was no car or even a 12V
battery to plug it in.
Tom was the first to get up the next morning, and while the boys were starting the fire and the
girls preparing breakfast, he gathered up empty cans and began to rub them with wet sand and
cut them into small squares.
“Do you folks have coins? A penny is best. Girls, you definitely have cotton pads, I need a
dozen of them."

Two hours later, the smartphone was charged, the students downloaded a map that quickly led
them to the nearest town.
How did Tom manage to charge the phone?
What else did he have to use besides the items listed above?

Hint:
The hint is “Voltaic pile”

https://www.youtube.com/channel/UC7e5BDljoP5619Ula2fF4zQ/

Answer:
When two different metals are in contact with a solution of some electrolyte, a galvanic cell
forms, which means more electronegative metal becomes positively charged, and less
electronegative metal becomes negatively charged. If you take copper and zinc plates, wet some
porous material with some electrolyte, for example, sodium chloride solution, and put it in
between these disks, you may detect a voltage of ~0.8V. That is a classical galvanic cell. If you
assemble several cells in a pile, you get so called Voltaic pile (named after Alessandro Volta,
another Italian scientist who invented it), and the maximal voltage between the ends of that pile
will be 0.8 times the number of cells. How could the students find copper and zinc? If they had
new pennies, that was not a big problem, because they have a zinc core. The only thing they had
to do was to completely remove copper coating from one side of each coin. The word
“completely” is important, because residual copper may affect battery’s efficiency. However,
copper removal is not easy, and the best way to do that could be to find a flat piece of sandstone
(which is possible in Adirondack). Sometimes, only the coins made of pure copper (or brass) are
available. In that case, another metal could be iron, for example, iron from empty cans. In that
case, it is important to clean the iron surface from the oxide and from other contaminations,
which can be done by wet sand. The iron-copper couple produces somewhat lower voltage, and
that may require the Voltaic pile to be longer.
The idea to use another common metal, aluminium, is not that good, despite the fact that
aluminium foil is easy to find and the Al-Cu couple produces, theoretically, higher voltage. The
problem is that aluminium forms a very hard and dense oxide layer, which makes it inert. The
voltaic pile made of Al-Cu cells may be unreliable, although theoretically possible.

Solution:
10 points:
To demonstrate that some metals react with acids, whereas others do not, a teacher put an iron
nail and a piece of copper wire into the same glass beaker and poured 10% aqueous HCl into it
(the iron nail and copper wire didn’t touch each other, and their tips were protruding from the
beaker). Bubbles of the hydrogen gas began to form at the nail’s surface, and the nail
immediately began to “dissolve”, whereas the copper surface remained unchanged, and no gas
formation was observed.
Look, if I leave this setup for several hours, the iron nail will “dissolve” nearly completely.
However, it is possible to affect the outcome of this reaction. I can do that without adding any
extra chemicals to the solution in the beaker. First, I can make the iron nail to react even faster;
Second, I can stop the reaction of the naIl with HCl; Third, I can invert the reaction, so the nail
will remain unchanged, whereas the copper wire will start to react with HCl. I am going to do that
just by doing something with the tips of the iron nail and copper wire that are protruding from the
beaker.”

How can the teacher do that? Will it be accompanied by some additional visual effects?

Hint:
What if a teacher allows electrical current to flow freely from one piece of metal to another, or
forces the current to flow in an opposite direction?

Solution:
When iron comes to contact with some asid, each hydrogen ions (H+) takes one electron from
the piece of iron. When two electrons are taken away, the following events occur. First, two
hydrogen atoms (H, without a plus sign) form at the iron surface, which recombine to produce
one hydrogen molecule, H2. Second, one iron ion, Fe2+ goes to the solution to keep the electric
charge of the piece of iron exactly zero. Chemists record that process as

Fe + 2 HCl → FeCl2 + H2

In other words, formation of hydrogen makes the iron rod positively charged, and “dissolution”
iron cations just keeps the rod electrically neutral. What if we withdraw electrons from iron using
some different means? For example, if we connect the iron rod to a piece of a copper wire.
Copper is more electronegative, so the electrons will flow to copper, and iron will start to dissolve
without forming the hydrogen gas”. That is important: the iron nail will be dissolving faster, but
formation of the hydrogen gas will essentially stop. Instead, the gas will start to form at the
surface of copper. It is not a surprise: since copper becomes slightly negative, H+ can take an
excess of electrons from it. However, the overall charge of the copper never becomes positive,
because it quickly replenishes the electron loss by withdrawing them from iron. In other words,
the processes of hydrogen formation and iron dissolution become separated in space: hydrogen
forms (mostly) at the surface of copper, but chemical transformation of iron to iron chloride
occurs, as usual (before the Decemped PoM lecture, we will do that experiment).
Can we accelerate that process even more? Yes, if we attach a battery to both metals in such a
way that electrons will be being forcibly pumped from iron to copper. Can we stop the process of
the reaction of iron with the acid? Yes, if we will be compensating the electrons lost by the iron
rod. In that case, hydrogen gas will be forming at the iron surface as usual, but no iron
dissolution will occur, because the electrons will be pumped into the iron nail, and it will remain
slightly negatively charged. Obviously, in that case, the second side of that battery is attached to
the copper wire, which will start to release copper ion to the solution (a totally unexpected
reaction, because we know that copper does not react with HCl).

BIOLOGY

As we predicted during the Sigma-Opening ceremony in 2018, the developers of CRISPR-Cas9
technology got the Nobel prize, although that happened just one month ago. To celebrate this
event, we declare this month a CRISPR-Cas9 month. Both problems are related to this subject.
IMPORTANT! To help you solve these problems, there will be a Biology PoM lecture.
This month, the lecture will be on Nov 21 at 11:00 AM via Zoom conference.
To join the Zoom conference, use this link:
https://us02web.zoom.us/j/4817690592?pwd=T2djSjRETEpDSHFZdWJpYlBTYzdjQT09
Meeting ID: 481 769 0592
Passcode: 879615
If you are unable to connect, email to mark.lukin@gmail.com
The lecture recording is available in our youtube channel:
https://www.youtube.com/channel/UC7e5BDljoP5619Ula2fF4zQ/

5 points:
A bioinformatic researcher performed analysis of a genome of some newly discovered bacteria,
whose genes had virtually nothing in common with any other bacteria. In this genome, the
researcher found strange segments with repeating motifs:

Sequence 1:

...TGGGTTTG AACCCG TCGTTG CGGGTT GAAGA(...)TGATTT AACCCG TGCTATG CGGGTT GAGCT

...

Sequence 2:
...AAAGT CCGACGG ACTTAT CCGACGG AATC(...)ATATC CCGACGG GCTAGT CCGACGG AAGC…

Sequence 3:
...GGACT CTTTGGC TTA CTTTGGC AATC(...)ACACC CTTTGGC CTAGTCA CTTTGGC TTTGGC…

The researcher concluded that all these repeats are the CRISPR cassettes. Is this conclusion
correct for each of those sequences?

Hint:
For a CRISPR cassette to work, its non-variable parts must form so called stem-loop (a.k.a.
hairpin) structures. What is needed for that?

mailto:mark.lukin@gmail.com
https://www.youtube.com/channel/UC7e5BDljoP5619Ula2fF4zQ/

Answer:
The non-variable part of CRISPR is that RNA that can fold to form a stem-loop, or hairpin
structure. To make that possible, a sequence of that segment has to be something like:

AATCCGNNNCGGATT

which folds as follows:

AATCCGN

|||||| N

TTAGGCN

In this scheme, vertical lines denote a Watson-Crick base pair.

It is easy to see that the sequence #1 has such motifs, and it may be, potentially, a CRISPR
cassette.

In the sequence #3, both the first and the second heptanucleotide segments are identical, and
they, obviously, cannot form a stem-loop.

The sequence #2 is more complex. Each pair of yellow segments is almost self complementary,
so it may form a stem-loop, although with some internal bulge. However, importantly, each
heptanucleotide segment in the sequence #2 is capable of forming a small stem-loop:

GGG

|| A

CCC

This hairpin (spem-loop) is known to be very stable, so it is very likely that that segment will form
four mini-hairping instead of one bigger. So the correct answer is #1.

10 points:
As we know, the CRISPR-Cas9 technology, which was awarded the Nobel prize one month
ago, allows genome editing directly in a living organism. That creates excellent opportunities for
treatment of various diseases caused by defects in genomic DNA. Which diseases listed below
can be treated with CRISPR-Cas9 technology?

1. Sickle cell anemia;
2. Beta-thalassemia;
3. Huntington disease;
4. Hemophilia;

5. Down’s syndrome;
6. MELAS syndrome;
7. Cancer.

Explain your answers.

Hint:
Currently the CRISPR-Cas9 technology is capable of fixing (or changing) some single gene in
some fraction of all cells in an organism or a tissue.

Answer:
The best target of CRISPR-Cas9 would be a disease that is caused by a single mutation in one
protein, which makes that protein non-functional. Good examples are sickle cell anemia GAG
codon changing to GTG in one concrete position), beta-thalassemia (non-deletion forms),
hemophilia. CRISPR-Cas9 can easily cut out the segment with the defect and replace it with a
correct sequence. These diseases do not require all cells in the affected tissue to be fixed, if only
a fraction of them is fixed, that may work. Another possibility is to take the affected tissue (for
example, bone marrow, treat it with CRISPR-Cas9 and reintroduce it back to the patient.
Other diseases may pose a greater challenge. Thus, MELAS is caused by mutations in
mitochondrial DNA, and the delivery of CRISPR-Cas9 to mitochondria (which is surrounded with
a double membrane) is very problematic. In addition, some cellular mechanisms CRISPR-Cas9
relies upon, such as including homology recombination, may be absent or working differently in
mitochondria.
Huntington disease may also pose some challenge, because it is caused by spontaneous
expansion of CAG repeats in the gene that encodes the protein called hungtintin. This protein is
necessary for normal functioning of neural cells, and it contains a relatively short segment of
CAG repeats, so the goal is not to eliminate CAGs completely, but to make that segment
reasonably short. That is not easy to do using CRISPR-Cas9, because the standard length of the
variable part of CRISPR is shorter that the normal lengths of CAG repeats, so that technology
cannot “see” this defect.
Down syndrome is resulted by trisomy 21 (duplication of the 21th chromosome), which is virtually
impossible to fix using CRISPR-Cas9.
Cancer therapy requires that ALL cancer cells be killed. That is hard to achieve using
CRISPR-Cas9, especially, taking into account that many processes are deregulated in cancer
cells, and the delivery of drugs into a tumor is a separate task. In addition, keeping in mind high
division and high mutation rate of cancer cells, a natural selection of cells that are resistant to
putative CRISPR-Cas9 treatment may occur. That doesn’t mean that CRISPR-Cas9 cannot be
used as a component of some future cancer treatment procedure, but that is another story.

https://en.wikipedia.org/wiki/Codon

LINGUISTICS

5 points:

In some of the countries in Europe the numbers in zip-codes used to be written according to the
following template in order to allow for automatic recognition:

The system checked one of the 9 intervals (2 diagonal, 6 on the outside of the box, 1 horizontal
interval inside the box) to determine whether it is filled out or not. In order to determine which
digit is written, the system had to be programmed to check a certain set of these intervals, and
based on the result of these checks, it had to determine which digit was written.

Question 1: What is the minimum number of intervals that had to be checked to determine the
digit?
Question 2: If the digits 2, 3, 6, and 9 had the following way of writing, what would be the
minimal number of checks?

Hint:

Answer:
Question 1: 4
Question 2: 6

Solution:
Question 1: The minimal number of checks is 4. To achieve the recognition, one has to check:

1) Middle horizontal interval (the only difference between 0 and 8)
2) Upper right interval
3) Lower left interval
4) Lower slanted interval

Question 2:

1) Middle horizontal interval (the only difference between 0 and 8)
2) Upper right interval (difference between 6 and 8)
3) Lower left interval (difference between 8 and 9; 5 and 6)

Using these 3 checks, we will be able to distinguish between the following groups: 0; 1; 6 ; 7; 8;
2,4,6; 3,5. To distinguish between 3 and 5 one needs to check either the upper left or the upper
slanted intervals, but it would help with the 2,4,6 group. To distinguish between those, one
would need about 2 checks. Therefore, in total one would need 6 checks.

10 points:
Below is a list of translated words from a language in northeast Asia. Each word below uses the
concept of stress, where one syllable in a word is emphasized over the others. In the examples
below, the stressed syllable is bolded. (The symbol ə below indicates a short vowel that occurs
for example in English at the beginning of the word about, or is represented by e in the word taken.),

Original English Original English
tatul fox punta liver
nətgəlqin hot qetumgən relative
nuraqin far piwtak (to) pour
gəlgən skin nəmitqin handy
neqəqin fast tumgətum friend
nəsəqqin cold tətka walrus
taplangətkən he sews shoes kəttil forehead
kəmgətək (to) curl up qalpuqal rainbow
itək (to) be kəpirik hold (a child) in one’s hands
paqətkuk (to) gallop təvitatətkən I work
nilgəqinat white (pl.) pintəvəlngək to attack (someone)

Using this information, set the proper stress mark on the following words. You may bold,
italicise, or set an accent mark to indicate stress on a syllable.

Original English
sawat lasso
pantawwi fur boots
nəktəqin sturdy
gətgan late autumn
nəminəm soup stock
nirvəqin spicy
puygən spear
tilmətil eagle
wiruwir salmon
wintatək (to) help
nəmalqin good

yaqyaq seagull
yatək (to) show up
tavitətkən I will work
pintətkən He is attacking (someone)
tayəsqəngki in the evening

Hint:

Answer:
Original English
sawat lasso
pantawwi fur boots
nəktəqin sturdy
gətgan late autumn
nəminəm soup stock
nirvəqin spicy
puygən spear
tilmətil eagle
wiruwir salmon
wintatək (to) help
nəmalqin good
yaqyaq seagull
yatək (to) show up
tavitətkən I will work
pintətkən He is attacking (someone)
tayəsqəngki in the evening

Solution:

1) 2-syllable words always have a stress on the 1st syllable.
2) For 3- or more syllable words, the stress is either on the 1st or on the 2nd syllable. The

only difference in the shape of the syllables between these two groups is the shape of
the 2nd syllable: if the stress is on the 1st syllable, the 2nd syllable always has a shape
[Consonant+ə]; we don’t see such shape of the 2nd syllable for the words with the stress on
the 2nd syllable.

3) Notice that none of the 2-syllable words have a syllable of the shape [Consonant+ə]
stressed!

4) Hence, we can deduce a pattern: the stress falls on the 2nd syllable if it’s not of the shape
[Consonant+ə]. If it is of that shape, then the stress falls on the 1st syllable. This pattern is
true for 3- or more syllable words. For two syllable words, we can just stipulate that the
stress is always initial, or alternatively we can say, that the stress in this language is never
final -- we don’t have enough data to understand what is actually important here!

The answer is the following:

Original English
sawat lasso
pantawwi fur boots
nəktəqin sturdy
gətgan late autumn
nəminəm soup stock
nirvəqin spicy
puygən spear
tilmətil eagle
wiruwir salmon
wintatək (to) help
nəmalqin good
yaqyaq seagull
yatək (to) show up
tavitətkən I will work
pintətkən He is attacking (someone)
tayəsqəngki in the evening

COMPUTER SCIENCE

● Your program should be written in Java or Python-3
● No GUI should be used in your program: eg., easy gui in Python
● All the input and output should be via files with specified in the problem statement
● Java programs should be submitted in a file with extension .java; Python-3 programs

should be submitted in a file with extension .py.
No .txt, .dat, .pdf, .doc, .docx, etc. Programs submitted in incorrect format will not
receive any points!

Introduction:

Consider the game of Connect4 (see rules in https://en.m.wikipedia.org/wiki/Connect_Four).

In this assignment as an input you will be given a position in the Connect4 game where Red
goes next.

Input:

● The input of your program is a file input.txt
● The file contains 6 lines, each line being 7 characters long with the position of Connect4

board.
● The character is one of the following:

o Letter O: Empty space
o Letter R: Red disk
o Letter Y: Yellow disk

● The first line represents the top of the board. The last line represents the bottom of the
board.

For example, file input.txt containing below text represents the game position in the picture on
the right:

Output:
● The output of your program is a file output.txt
● A move in the game is specified by the number that represents the column where a Red

disk will be dropped
● 1 represents the left-most column, 7 represents the right-most column

OOOOOOO

OOOROOO

OORYOOO

ORYROOY

ORYROOY

OYYROOY

https://en.m.wikipedia.org/wiki/Connect_Four

5 points:

Write a program that given a position in input.txt finds the move that brings an immediate win to
the Red.

Output should contain:

- number 1-7, corresponding to the move
- X - if the win for Red in one move is not possible
- Z - if position is such that the one of the sides has already won

Solution:

Java:
/*

 Connect 4 - 5 pointer

Even though the complete solution exists, it's quite long ;-)

So, we'll use a "brute force" approach because of its simplicity and because we only need to

solve for 1 or 2 moves, i.e. the number of possible combinations is not large.

A win can be achieved by either completing a horizontal or vertical or "left" or "right"

diagonals. We'll check these moves separately.

Note: we will not check if a given position is valid.

algorithm:

 1) check if red or yellow has already won => Z

 again, we assume a correct position, so the winning sequence must end at top

 2) try all possible red moves and see if it results in a win

 3) otherwise, the red win in 1 step is not possible => X

*/

import java.io.*;

import java.util.*;

import java.util.stream.Stream;

public class Connect4 {

 static final int m = 6; // rows

 static final int n = 7; // columns

 static final Set<Character> validChars = new HashSet<>(Arrays.asList('R', 'Y', 'O'));

 char[][] board = {{'O','O','O','O','O','O','O'}, // 0

 {'O','O','O','R','O','O','O'}, // 1

 {'O','O','R','Y','O','O','O'}, // 2

 {'O','R','Y','R','O','O','Y'}, // 3

 {'O','R','Y','R','O','O','Y'}, // 4

 {'O','Y','Y','R','O','O','Y'}}; // m-1

 void input(String fname) throws IOException {

 try(BufferedReader br = new BufferedReader(new FileReader(fname))) {

 for(int i=0; i<m; i++) {

 String line = br.readLine().trim();

 char[] chars = line.toCharArray();

 if(chars.length != n)

 throw new IllegalArgumentException(String.format("there must be %d columns", n));

 // Stream<Character> x = new String(chars).chars().mapToObj(ch->(char)ch);

 if(!(new String(chars).chars().mapToObj(ch->(char)ch)).allMatch(ch ->

validChars.contains(ch)))

 // if(!Stream.of(chars).allMatch(ch -> { System.out.println(ch); return

validChars.contains(ch); }))

 throw new IllegalArgumentException("only R, Y and O are allowed");

 board[i] = chars;

 }

 }

 }

 void output(String fname, String answer) throws IOException {

 try(BufferedWriter bw = new BufferedWriter(new FileWriter(fname))) {

 bw.write(String.format("%s\n", answer));

 }

 }

 // check if the disk at [i,j] is in a winning position

 boolean haveWon(int i, int j) {

 char symbol = board[i][j];

 if(symbol!='R' && symbol!='Y')

 throw new IllegalArgumentException("symbol must be either R or Y");

 // horizontal

 int k1 = j - 1;

 while(k1>=0 && board[i][k1]==symbol)

 k1--;

 int k2 = j + 1;

 while(k2<n && board[i][k2]==symbol)

 k2++;

 if(k2-k1-1 >= 4)

 return true;

 // vertical

 k1 = i - 1;

 while(k1>=0 && board[k1][j]==symbol)

 k1--;

 k2 = i + 1;

 while(k2<m && board[k2][j]==symbol)

 k2++;

 if(k2-k1-1 >= 4)

 return true;

 // "left" diagonal

 int i2 = i - 1;

 int j2 = j - 1;

 while(i2>=0 && j2>=0 && board[i2][j2]==symbol) {

 i2--;

 j2--;

 }

 int i3 = i + 1;

 int j3 = j + 1;

 while(i3<m && j3<n && board[i3][j3]==symbol) {

 i3++;

 j3++;

 }

 if(i3-i2-1 >= 4)

 return true;

 // "right" diagonal

 i2 = i - 1;

 j2 = j + 1;

 while(i2>=0 && j2<n && board[i2][j2]==symbol) {

 i2--;

 j2++;

 }

 i3 = i + 1;

 j3 = j - 1;

 while(i3<m && j3>=0 && board[i3][j3]==symbol) {

 i3++;

 j3--;

 }

 if(i3-i2-1 >= 4)

 return true;

 return false;

 }

 // get the row number of the topmost disk for each column

 int[] findTop() {

 int[] top = new int[n];

 Arrays.fill(top, -1); // we'll use -1 as an "empty" marker

 for(int j=0; j<n; j++) {

 int i = 0;

 while(i<m && board[i][j]=='O')

 i++;

 if(i < m)

 top[j] = i;

 }

 return top;

 }

 // check if red or yellow has already won

 // we assume a correct position, so the winning sequence must end at top

 char checkWon(int[] top) {

 for(int j=0; j<n; j++) {

 if(top[j]>=0 && haveWon(top[j], j))

 return 'Z';

 }

 return '_';

 }

 // return array of (i,j) of all possible next moves

 ArrayList<ArrayList<Integer>> getAllMoves(int[] top) {

 ArrayList<ArrayList<Integer>> a = new ArrayList<>();

 for(int j=0; j<n; j++) {

 if(top[j] == 0)

 ; // full column

 else if(top[j] < 0)

 a.add(new ArrayList<>(Arrays.asList(m-1, j)));

 else

 a.add(new ArrayList<>(Arrays.asList(top[j]-1, j)));

 }

 return a;

 }

 ArrayList<Object> move1step(char disk, int[] top) {

 // try all possible moves and see if it results in a win

 ArrayList<ArrayList<Integer>> firstMoves = getAllMoves(top);

 for(ArrayList<Integer> item : firstMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 if(haveWon(i, j)) {

 board[i][j] = 'O'; // undo

 return new ArrayList<>(){{ add(j); }};

 }

 board[i][j] = 'O'; // undo

 }

 // otherwise, the win is not reachable

 return new ArrayList<>(Arrays.asList('X', firstMoves));

 }

 ArrayList<Object> check1step(char disk) {

 // check if red or yellow has already won

 int[] top = findTop();

 char answer = checkWon(top);

 if(answer == 'Z')

 return new ArrayList<>(){{ add(answer); }};

 // Red tries all possible moves and see if it results in a win in 1 step

 return move1step(disk, top);

 }

 Object move2steps(char disk) {

 ArrayList<Object> x = check1step(disk);

 Object answer = x.get(0);

 ArrayList<ArrayList<Integer>> firstRedMoves = (ArrayList<ArrayList<Integer>>)x.get(1);

 if(answer instanceof Integer)

 return answer;

 assert(answer instanceof Character && (char)answer=='X');

 // if not then for each red move

 // yellow tries all possible moves; if wins then this red move is not taken

 ArrayList<ArrayList<Integer>> redMoves = new ArrayList<>(); // safe moves such that does

not result in yellow's immediate win

 char opDisk = 'Y'; // opponent's disk, yellow in our case

 if(disk == 'Y')

 opDisk = 'R';

 for(ArrayList<Integer> item : firstRedMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 int[] top2 = findTop();

 x = move1step(opDisk, top2);

 answer = x.get(0);

 if(answer instanceof Character && (char)answer == 'X')

 redMoves.add(new ArrayList<>(Arrays.asList(i,j)));

 board[i][j] = 'O'; // undo

 }

 // if remaining set of red moves is empty then yellow always wins

 if(redMoves.isEmpty())

 return 'Y';

 // now we try all combinations if red could move twice

 // and find the winning combinations

 // if for any such 2 combinations the 1st move is the same but the 2nd is different

 // then yellow could not block both of them, therefore red wins anyway after 2nd step

 for(ArrayList<Integer> item : redMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 boolean won = false;

 int[] top2 = findTop();

 ArrayList<ArrayList<Integer>> moves = getAllMoves(top2);

 for(ArrayList<Integer> item2 : moves) {

 int i2 = item2.get(0);

 int j2 = item2.get(1);

 board[i2][j2] = disk;

 if(haveWon(i2, j2)) {

 if(!won)

 won = true;

 else { // 2nd win for different j2

 board[i2][j2] = 'O'; // undo

 board[i][j] = 'O'; // undo

 return j;

 }

 }

 board[i2][j2] = 'O';

 }

 board[i][j] = 'O'; // undo

 }

 // otherwise, the red win is not possible in 2 moves

 return 'X';

 }

}

public class Connect4_5 {

 public static void main(String[] args) throws Exception {

 Connect4 connect4 = new Connect4();

 connect4.input("input.txt");

 ArrayList<Object> ret = connect4.check1step('R');

 Object answer = ret.get(0);

 if(answer instanceof Character) {

 System.out.println("answer = " + (char)answer);

 connect4.output("output.txt", String.valueOf(answer));

 }

 else if(answer instanceof Integer) {

 int x = (int)answer + 1;

 System.out.println("answer = " + x);

 connect4.output("output.txt", String.valueOf(x));

 }

 else

 throw new Exception("bug: answer should have been either char or int");

 }

}

Python:
"""

 Connect 4 - 5 pointer

Even though the complete solution exists, it's quite long ;-)

So, we'll use a "brute force" approach because of its simplicity and because we only need to

solve for 1 or 2 moves,

i.e. the number of possible combinations is not large.

A win can be achieved by either completing a horizontal or vertical or "left" or "right"

diagonals. We'll check these

moves separately.

Note: we will not check if a given position is valid.

algorithm:

 1) check if red or yellow has already won => Z

 again, we assume a correct position, so the winning sequence must end at top

 2) try all possible red moves and see if it results in a win

 3) otherwise, the red win in 1 step is not possible => X

"""

import re

class Connect4:

 m = 6 # rows

 n = 7 # columns

 # board = [['O','O','O','O','O','O','O'], # 0

 # ['O','O','O','R','O','O','O'], # 1

 # ['O','O','R','Y','O','O','O'], # 2

 # ['O','R','Y','R','O','O','Y'], # 3

 # ['O','R','Y','R','O','O','Y'], # 4

 # ['O','Y','Y','R','O','O','Y']] # m-1

 board = []

 def input(self, fname):

 with open(fname) as in_file:

 for i in range(self.m):

 line = in_file.readline().strip()

 chars = [ch for ch in line]

 assert(len(chars) == self.n)

 assert(all(ch in ['R', 'Y', 'O'] for ch in chars))

 self.board.append(chars)

 def output(self, fname, answer):

 with open(fname, "w") as out_file:

 out_file.write(f"{answer}\n")

 # check if the disk at [i,j] is in a winning position

 def have_won(self, i, j) -> bool:

 symbol = self.board[i][j]

 assert(symbol=='R' or symbol=='Y')

 # horizontal

 k1 = j - 1

 while k1>=0 and self.board[i][k1]==symbol:

 k1 -= 1

 k2 = j + 1

 while k2<self.n and self.board[i][k2]==symbol:

 k2 += 1

 if k2-k1-1 >= 4:

 return True

 # vertical

 k1 = i - 1

 while k1>=0 and self.board[k1][j]==symbol:

 k1 -= 1

 k2 = i + 1

 while k2<self.m and self.board[k2][j]==symbol:

 k2 += 1

 if k2-k1-1 >= 4:

 return True

 # "left" diagonal

 i2 = i - 1

 j2 = j - 1

 while i2>=0 and j2>=0 and self.board[i2][j2]==symbol:

 i2 -= 1

 j2 -= 1

 i3 = i + 1

 j3 = j + 1

 while i3<self.m and j3<self.n and self.board[i3][j3]==symbol:

 i3 += 1

 j3 += 1

 if i3-i2-1 >= 4:

 return True

 # "right" diagonal

 i2 = i - 1

 j2 = j + 1

 while i2>=0 and j2<self.n and self.board[i2][j2]==symbol:

 i2 -= 1

 j2 += 1

 i3 = i + 1

 j3 = j - 1

 while i3<self.m and j3>=0 and self.board[i3][j3]==symbol:

 i3 += 1

 j3 -= 1

 if i3-i2-1 >= 4:

 return True

 return False

 # get the row number of the topmost disk for each column

 def find_top(self):

 top = [None]*self.n

 for j in range(self.n):

 i = 0

 while i<self.m and self.board[i][j] == 'O':

 i += 1

 if i < self.m:

 top[j] = i

 return top

 # check if red or yellow has already won

 # we assume a correct position, so the winning sequence must end at top

 def check_won(self, top):

 for j in range(self.n):

 if top[j] is not None and self.have_won(top[j], j):

 return 'Z'

 # return array of (i,j) of all possible next moves

 def get_all_moves(self, top):

 a = []

 for j in range(self.n):

 if top[j] == 0:

 pass # full column

 elif top[j] is None:

 a.append((self.m-1, j))

 else:

 a.append((top[j]-1, j))

 return a

 def move_1step(self, disk, top):

 # try all possible moves and see if it results in a win

 first_moves = self.get_all_moves(top)

 for i, j in first_moves:

 self.board[i][j] = disk # try move

 if self.have_won(i, j):

 self.board[i][j] = 'O' # undo

 return j, None

 self.board[i][j] = 'O' # undo

 # otherwise, the win is not reachable

 return 'X', first_moves

 def check_1step(self, disk):

 # check if red or yellow has already won

 top = self.find_top()

 answer = self.check_won(top)

 if answer == 'Z':

 return answer

 # Red tries all possible moves and see if it results in a win in 1 step

 return self.move_1step(disk, top)

 def move_2steps(self, disk):

 answer, first_red_moves = self.check_1step(disk)

 if type(answer) == int:

 return answer

 assert(answer == 'X')

 # if not then for each red move

 # yellow tries all possible moves; if wins then this red move is not taken

 red_moves = [] # safe moves such that does not result in yellow's immediate win

 op_disk = 'Y' if disk == 'R' else 'R' # opponent's disk, yellow in our case

 for i, j in first_red_moves:

 self.board[i][j] = disk # try move

 top2 = self.find_top()

 answer, _ = self.move_1step(op_disk, top2)

 if answer == 'X':

 red_moves.append((i,j))

 self.board[i][j] = 'O' # undo

 # if remaining set of red moves is empty then yellow always wins

 if len(red_moves) == 0:

 return 'Y'

 # now we try all combinations if red could move twice

 # and find the winning combinations

 # if for any such 2 combinations the 1st move is the same but the 2nd is different

 # then yellow could not block both of them, therefore red wins anyway after 2nd step

 for i, j in red_moves:

 self.board[i][j] = disk # try move

 won = False

 top2 = self.find_top()

 moves = self.get_all_moves(top2)

 for i2, j2 in moves:

 self.board[i2][j2] = disk

 if self.have_won(i2, j2):

 if not won:

 won = True

 else: # 2nd win for different j2

 self.board[i2][j2] = 'O' # undo

 self.board[i][j] = 'O' # undo

 return j

 self.board[i2][j2] = 'O'

 self.board[i][j] = 'O' # undo

 # otherwise, the red win is not possible in 2 moves

 return 'X'

if __name__ == '__main__':

 connect4 = Connect4()

 connect4.input("input.txt")

 answer, _ = connect4.check_1step('R')

 if type(answer) == int:

 answer += 1

 print(f"answer = {answer}")

 connect4.output("output.txt", answer)

10 points:
Write a program that given a position in input.txt finds the move that either brings an immediate
win to the Red or leads to a win in the next move, while avoiding a loss in the next move by
Yellow.

Output should contain:

- number 1-7, corresponding to the move
- X - if the win for Red in one or two moves is not possible
- Y - if a loss for Red in unavoidable
- Z - if position is such that the one of the sides has already won

Solution:

Java:
/*

 Connect 4 - 10 pointer

This is a direct extension to the 5-pointer problem.

algorithm:

 1) check if red or yellow has already won => Z

 again, we assume a correct position, so the winning sequence must end at top

 2) Red tries all possible moves and see if it results in a win in 1 step => j

 3) if not then for each red move

 yellow tries all possible moves; if wins then this red move is not taken

 4) if remaining set of red moves is empty then yellow always wins => Y

 5) now we try all combinations if red could move twice

 and find the winning combinations

 if for any such 2 combinations the 1st move is the same but the 2nd is different

 then yellow could not block both of them, therefore red wins anyway after 2nd step

 6) otherwise, the red win is not possible in 2 moves => X

*/

import java.io.*;

import java.util.*;

import java.util.stream.Stream;

public class Connect4 {

 static final int m = 6; // rows

 static final int n = 7; // columns

 static final Set<Character> validChars = new HashSet<>(Arrays.asList('R', 'Y', 'O'));

 char[][] board = {{'O','O','O','O','O','O','O'}, // 0

 {'O','O','O','R','O','O','O'}, // 1

 {'O','O','R','Y','O','O','O'}, // 2

 {'O','R','Y','R','O','O','Y'}, // 3

 {'O','R','Y','R','O','O','Y'}, // 4

 {'O','Y','Y','R','O','O','Y'}}; // m-1

 void input(String fname) throws IOException {

 try(BufferedReader br = new BufferedReader(new FileReader(fname))) {

 for(int i=0; i<m; i++) {

 String line = br.readLine().trim();

 char[] chars = line.toCharArray();

 if(chars.length != n)

 throw new IllegalArgumentException(String.format("there must be %d columns", n));

 // Stream<Character> x = new String(chars).chars().mapToObj(ch->(char)ch);

 if(!(new String(chars).chars().mapToObj(ch->(char)ch)).allMatch(ch ->

validChars.contains(ch)))

 // if(!Stream.of(chars).allMatch(ch -> { System.out.println(ch); return

validChars.contains(ch); }))

 throw new IllegalArgumentException("only R, Y and O are allowed");

 board[i] = chars;

 }

 }

 }

 void output(String fname, String answer) throws IOException {

 try(BufferedWriter bw = new BufferedWriter(new FileWriter(fname))) {

 bw.write(String.format("%s\n", answer));

 }

 }

 // check if the disk at [i,j] is in a winning position

 boolean haveWon(int i, int j) {

 char symbol = board[i][j];

 if(symbol!='R' && symbol!='Y')

 throw new IllegalArgumentException("symbol must be either R or Y");

 // horizontal

 int k1 = j - 1;

 while(k1>=0 && board[i][k1]==symbol)

 k1--;

 int k2 = j + 1;

 while(k2<n && board[i][k2]==symbol)

 k2++;

 if(k2-k1-1 >= 4)

 return true;

 // vertical

 k1 = i - 1;

 while(k1>=0 && board[k1][j]==symbol)

 k1--;

 k2 = i + 1;

 while(k2<m && board[k2][j]==symbol)

 k2++;

 if(k2-k1-1 >= 4)

 return true;

 // "left" diagonal

 int i2 = i - 1;

 int j2 = j - 1;

 while(i2>=0 && j2>=0 && board[i2][j2]==symbol) {

 i2--;

 j2--;

 }

 int i3 = i + 1;

 int j3 = j + 1;

 while(i3<m && j3<n && board[i3][j3]==symbol) {

 i3++;

 j3++;

 }

 if(i3-i2-1 >= 4)

 return true;

 // "right" diagonal

 i2 = i - 1;

 j2 = j + 1;

 while(i2>=0 && j2<n && board[i2][j2]==symbol) {

 i2--;

 j2++;

 }

 i3 = i + 1;

 j3 = j - 1;

 while(i3<m && j3>=0 && board[i3][j3]==symbol) {

 i3++;

 j3--;

 }

 if(i3-i2-1 >= 4)

 return true;

 return false;

 }

 // get the row number of the topmost disk for each column

 int[] findTop() {

 int[] top = new int[n];

 Arrays.fill(top, -1); // we'll use -1 as an "empty" marker

 for(int j=0; j<n; j++) {

 int i = 0;

 while(i<m && board[i][j]=='O')

 i++;

 if(i < m)

 top[j] = i;

 }

 return top;

 }

 // check if red or yellow has already won

 // we assume a correct position, so the winning sequence must end at top

 char checkWon(int[] top) {

 for(int j=0; j<n; j++) {

 if(top[j]>=0 && haveWon(top[j], j))

 return 'Z';

 }

 return '_';

 }

 // return array of (i,j) of all possible next moves

 ArrayList<ArrayList<Integer>> getAllMoves(int[] top) {

 ArrayList<ArrayList<Integer>> a = new ArrayList<>();

 for(int j=0; j<n; j++) {

 if(top[j] == 0)

 ; // full column

 else if(top[j] < 0)

 a.add(new ArrayList<>(Arrays.asList(m-1, j)));

 else

 a.add(new ArrayList<>(Arrays.asList(top[j]-1, j)));

 }

 return a;

 }

 ArrayList<Object> move1step(char disk, int[] top) {

 // try all possible moves and see if it results in a win

 ArrayList<ArrayList<Integer>> firstMoves = getAllMoves(top);

 for(ArrayList<Integer> item : firstMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 if(haveWon(i, j)) {

 board[i][j] = 'O'; // undo

 return new ArrayList<>(){{ add(j); }};

 }

 board[i][j] = 'O'; // undo

 }

 // otherwise, the win is not reachable

 return new ArrayList<>(Arrays.asList('X', firstMoves));

 }

 ArrayList<Object> check1step(char disk) {

 // check if red or yellow has already won

 int[] top = findTop();

 char answer = checkWon(top);

 if(answer == 'Z')

 return new ArrayList<>(){{ add(answer); }};

 // Red tries all possible moves and see if it results in a win in 1 step

 return move1step(disk, top);

 }

 Object move2steps(char disk) {

 ArrayList<Object> x = check1step(disk);

 Object answer = x.get(0);

 ArrayList<ArrayList<Integer>> firstRedMoves = (ArrayList<ArrayList<Integer>>)x.get(1);

 if(answer instanceof Integer)

 return answer;

 assert(answer instanceof Character && (char)answer=='X');

 // if not then for each red move

 // yellow tries all possible moves; if wins then this red move is not taken

 ArrayList<ArrayList<Integer>> redMoves = new ArrayList<>(); // safe moves such that does

not result in yellow's immediate win

 char opDisk = 'Y'; // opponent's disk, yellow in our case

 if(disk == 'Y')

 opDisk = 'R';

 for(ArrayList<Integer> item : firstRedMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 int[] top2 = findTop();

 x = move1step(opDisk, top2);

 answer = x.get(0);

 if(answer instanceof Character && (char)answer == 'X')

 redMoves.add(new ArrayList<>(Arrays.asList(i,j)));

 board[i][j] = 'O'; // undo

 }

 // if remaining set of red moves is empty then yellow always wins

 if(redMoves.isEmpty())

 return 'Y';

 // now we try all combinations if red could move twice

 // and find the winning combinations

 // if for any such 2 combinations the 1st move is the same but the 2nd is different

 // then yellow could not block both of them, therefore red wins anyway after 2nd step

 for(ArrayList<Integer> item : redMoves) {

 int i = item.get(0);

 int j = item.get(1);

 board[i][j] = disk; // try move

 boolean won = false;

 int[] top2 = findTop();

 ArrayList<ArrayList<Integer>> moves = getAllMoves(top2);

 for(ArrayList<Integer> item2 : moves) {

 int i2 = item2.get(0);

 int j2 = item2.get(1);

 board[i2][j2] = disk;

 if(haveWon(i2, j2)) {

 if(!won)

 won = true;

 else { // 2nd win for different j2

 board[i2][j2] = 'O'; // undo

 board[i][j] = 'O'; // undo

 return j;

 }

 }

 board[i2][j2] = 'O';

 }

 board[i][j] = 'O'; // undo

 }

 // otherwise, the red win is not possible in 2 moves

 return 'X';

 }

}

public class Connect4_10 {

 public static void main(String[] args) throws Exception {

 Connect4 connect4 = new Connect4();

 connect4.input("input.txt");

 Object answer = connect4.move2steps('R');

 if(answer instanceof Character) {

 System.out.println("answer = " + (char)answer);

 connect4.output("output.txt", String.valueOf(answer));

 }

 else if(answer instanceof Integer) {

 int x = (int)answer + 1;

 System.out.println("answer = " + x);

 connect4.output("output.txt", String.valueOf(x));

 }

 else

 throw new Exception("bug: answer should have been either char or int");

 }

}

Python:
"""

 Connect 4 - 10 pointer

This is a direct extension to the 5-pointer problem.

algorithm:

 1) check if red or yellow has already won => Z

 again, we assume a correct position, so the winning sequence must end at top

 2) Red tries all possible moves and see if it results in a win in 1 step => j

 3) if not then for each red move

 yellow tries all possible moves; if wins then this red move is not taken

 4) if remaining set of red moves is empty then yellow always wins => Y

 5) now we try all combinations if red could move twice

 and find the winning combinations

 if for any such 2 combinations the 1st move is the same but the 2nd is different

 then yellow could not block both of them, therefore red wins anyway after 2nd step

 6) otherwise, the red win is not possible in 2 moves => X

"""

import re

class Connect4:

 m = 6 # rows

 n = 7 # columns

 # board = [['O','O','O','O','O','O','O'], # 0

 # ['O','O','O','R','O','O','O'], # 1

 # ['O','O','R','Y','O','O','O'], # 2

 # ['O','R','Y','R','O','O','Y'], # 3

 # ['O','R','Y','R','O','O','Y'], # 4

 # ['O','Y','Y','R','O','O','Y']] # m-1

 board = []

 def input(self, fname):

 with open(fname) as in_file:

 for i in range(self.m):

 line = in_file.readline().strip()

 chars = [ch for ch in line]

 assert(len(chars) == self.n)

 assert(all(ch in ['R', 'Y', 'O'] for ch in chars))

 self.board.append(chars)

 def output(self, fname, answer):

 with open(fname, "w") as out_file:

 out_file.write(f"{answer}\n")

 # check if the disk at [i,j] is in a winning position

 def have_won(self, i, j) -> bool:

 symbol = self.board[i][j]

 assert(symbol=='R' or symbol=='Y')

 # horizontal

 k1 = j - 1

 while k1>=0 and self.board[i][k1]==symbol:

 k1 -= 1

 k2 = j + 1

 while k2<self.n and self.board[i][k2]==symbol:

 k2 += 1

 if k2-k1-1 >= 4:

 return True

 # vertical

 k1 = i - 1

 while k1>=0 and self.board[k1][j]==symbol:

 k1 -= 1

 k2 = i + 1

 while k2<self.m and self.board[k2][j]==symbol:

 k2 += 1

 if k2-k1-1 >= 4:

 return True

 # "left" diagonal

 i2 = i - 1

 j2 = j - 1

 while i2>=0 and j2>=0 and self.board[i2][j2]==symbol:

 i2 -= 1

 j2 -= 1

 i3 = i + 1

 j3 = j + 1

 while i3<self.m and j3<self.n and self.board[i3][j3]==symbol:

 i3 += 1

 j3 += 1

 if i3-i2-1 >= 4:

 return True

 # "right" diagonal

 i2 = i - 1

 j2 = j + 1

 while i2>=0 and j2<self.n and self.board[i2][j2]==symbol:

 i2 -= 1

 j2 += 1

 i3 = i + 1

 j3 = j - 1

 while i3<self.m and j3>=0 and self.board[i3][j3]==symbol:

 i3 += 1

 j3 -= 1

 if i3-i2-1 >= 4:

 return True

 return False

 # get the row number of the topmost disk for each column

 def find_top(self):

 top = [None]*self.n

 for j in range(self.n):

 i = 0

 while i<self.m and self.board[i][j] == 'O':

 i += 1

 if i < self.m:

 top[j] = i

 return top

 # check if red or yellow has already won

 # we assume a correct position, so the winning sequence must end at top

 def check_won(self, top):

 for j in range(self.n):

 if top[j] is not None and self.have_won(top[j], j):

 return 'Z'

 # return array of (i,j) of all possible next moves

 def get_all_moves(self, top):

 a = []

 for j in range(self.n):

 if top[j] == 0:

 pass # full column

 elif top[j] is None:

 a.append((self.m-1, j))

 else:

 a.append((top[j]-1, j))

 return a

 def move_1step(self, disk, top):

 # try all possible moves and see if it results in a win

 first_moves = self.get_all_moves(top)

 for i, j in first_moves:

 self.board[i][j] = disk # try move

 if self.have_won(i, j):

 self.board[i][j] = 'O' # undo

 return j, None

 self.board[i][j] = 'O' # undo

 # otherwise, the win is not reachable

 return 'X', first_moves

 def check_1step(self, disk):

 # check if red or yellow has already won

 top = self.find_top()

 answer = self.check_won(top)

 if answer == 'Z':

 return answer

 # Red tries all possible moves and see if it results in a win in 1 step

 return self.move_1step(disk, top)

 def move_2steps(self, disk):

 answer, first_red_moves = self.check_1step(disk)

 if type(answer) == int:

 return answer

 assert(answer == 'X')

 # if not then for each red move

 # yellow tries all possible moves; if wins then this red move is not taken

 red_moves = [] # safe moves such that does not result in yellow's immediate win

 op_disk = 'Y' if disk == 'R' else 'R' # opponent's disk, yellow in our case

 for i, j in first_red_moves:

 self.board[i][j] = disk # try move

 top2 = self.find_top()

 answer, _ = self.move_1step(op_disk, top2)

 if answer == 'X':

 red_moves.append((i,j))

 self.board[i][j] = 'O' # undo

 # if remaining set of red moves is empty then yellow always wins

 if len(red_moves) == 0:

 return 'Y'

 # now we try all combinations if red could move twice

 # and find the winning combinations

 # if for any such 2 combinations the 1st move is the same but the 2nd is different

 # then yellow could not block both of them, therefore red wins anyway after 2nd step

 for i, j in red_moves:

 self.board[i][j] = disk # try move

 won = False

 top2 = self.find_top()

 moves = self.get_all_moves(top2)

 for i2, j2 in moves:

 self.board[i2][j2] = disk

 if self.have_won(i2, j2):

 if not won:

 won = True

 else: # 2nd win for different j2

 self.board[i2][j2] = 'O' # undo

 self.board[i][j] = 'O' # undo

 return j

 self.board[i2][j2] = 'O'

 self.board[i][j] = 'O' # undo

 # otherwise, the red win is not possible in 2 moves

 return 'X'

if __name__ == '__main__':

 connect4 = Connect4()

 connect4.input("input.txt")

 answer = connect4.move_2steps('R')

 if type(answer) == int:

 answer += 1

 print(f"answer = {answer}")

 connect4.output("output.txt", answer)

