

MATHEMATICS

5 points: A circle is inscribed in a triangle. The perimeters of the circle and the triangle are 1cm
and 10 cm, respectively. Find the area of the triangle.

Hint: Look at the picture.

Answer: cm5

2π
2

Solution: The picture shows how the original triangle
can be cut on 3 triangles: their bases are the three
sides of the big triangle (a,b and c), and they all
share the center of the circle as a vertex. At each of
the three touching point, the corresponding side is
perpendicular to the line segment connecting that
point with the center of the circle. Therefore, the
height of each of the three small triangles is equal to
the radius of the circle. We can now find the area of the big triangle by adding areas of the
three small ones:

r/2A = 2
ar + 2

br + 2
cr = p

Here is the perimeter of the triangle, and is the radius of the 0cmp = a + b + c = 1 cmr = 1
2π

inscribed circle. Therefore,
r/2 cmA = p = 5

2π
2

10 points: A sphere is inscribed in a polyhedron so that it touches all of its faces. The volume
of the sphere is 9 cm3. The surface area of the polyhedron is 50 cm2. What is its volume?

Hint: same as for 5 pt problem. You’ll need to imagine a similar construction in 3D. Note that
volume of a pyramid is Bh/3 (B is the area of its base which may have any shape), h is its
height.

Answer: cm50

√3 4π
3

Solution: Similarly to the 5 pt. problem, we can split the original polyhedron onto several
pyramids, each having one face of that polyhedron as as its base, and all sharing the center of
the sphere as a vertex. We can find the volume of the large polyhedron as a sum of the areas
of these pyramids, each being (B is the area of the base, r is the radius of the inscribed r/3B
sphere which is also the height of all these pyramids):

R/3V = A

 Here A=50 cm2 is the total surface area of the polyhedron, and R is the radius of the inscribed
sphere. To find the radius note that the volume of the sphere is

, soR cm3
4π 3 = 9 3

.cmR = 3
√3 4π

We now can calculate the total volume of the polyhedron:

= .R/3V = A cm50
√3 4π

3

 PHYSICS

This month Physics problems are on the mechanical work and mechanical energy
conservation. You might find the following links useful.
https://en.wikipedia.org/wiki/Work_(physics)
http://hyperphysics.phy-astr.gsu.edu/hbase/ke.html
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html
http://hyperphysics.phy-astr.gsu.edu/hbase/frict.html

5 pt
A spring gun using a massless spring with the spring constant is loaded with the00 N /mk = 1
ball of the mass , so that the maximal compression of the spring is . What.01 kgm = 0 0 cmA = 1
is the maximal height reached by the ball if the gun shoots strictly vertically. Neglect friction and
air resistance. Assume that the free fall acceleration .0 m/sg ≈ 1 2

Hint: Use the conservation of energy.

Answer: m h ≈ 5

Solution:
The elastic energy of the compressed spring is equal to the gravitational potential energy of the
ball at the highest point of its trajectory. We have and m .gh2

kA2
= m h = kA2

2mg ≈ 100 0.1*
2

2 0.01 10* *
= 5

10 pt
A small block is sliding from a hill of the height down the frictionless slope towards them H = 5
similar hill. There is a small horizontal patch of the surface with kinetic friction coefficient .3μ = 0
of the length between the hills. At what position will the block stop?mL = 1

https://en.wikipedia.org/wiki/Work_(physics)
http://hyperphysics.phy-astr.gsu.edu/hbase/ke.html
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html
http://hyperphysics.phy-astr.gsu.edu/hbase/frict.html

Hint: Find the work done by friction force.

Answer: m from the left end of the patch.67 x ≈ 0

Solution:
It is clear that the block will oscillate from left to right until all its initial potential energy will be
converted into heat through the work done by friction force. The work of the friction force is
negative and equal to , where is the mass of the block and is the totalS − mgSW = F = μ m S
distance traveled by the block until it stopped. Here we used the value of the friction force

. We have from the conservation of energy and find− mgF = μ gH gH mgSm +W = m − μ = 0
m. This means that the block will go from left to right and back 8 times (/μ /0.3 6.67 S = H = 5 ≈ 1

m) and then will go from left to right and stop at the distance of m from the left6 8 × 2 = 1 .67 x ≈ 0
end of the patch.

CHEMISTRY

5 points:
DNA means “deoxyribonucleic acid”, but if you take a commercially available solution of DNA
and measure its pH, the solution will be nearly neutral. Similarly, cell nuclei are full of densely
packed DNA, but the media is neutral there. Why does it happen, and is DNA a real acid?

Hint:
Classical (“Bronsted’s”) acids always contain a constant part (hydrogen atoms) and a variable
part (this variable part may be huge and complex, especially in organic acids, and it is this part
which makes acids different from each other). In solution, hydrogens usually dissociate from the
acid molecule, and most biochemists prefer to (...continue by yourselves).
Solution:
From chemist’s point of view, DNA is a phosphoric acid derivative. There are many phosphate
fragments in DNA, and these fragments are connected by nucleoside moieties. Two nucleosides
are attached to each DNA’s phosphate, which means only one acidic hydrogen is remaining.
However, the presence of even one hydrogen in each phosphate group is sufficient for DNA to
display its acidic nature. Yes, DNA is an acid, and it is a moderately strong acid (for example, it is
stronger than acetic acid).
However, it is necessary to keep in mind that deoxynucleic acid is a substance that is virtually
insoluble in water. Pure DNA precipitates immediately, and to make it soluble, one has to convert
it into a salt. When DNA reacts with some appropriate base, for example, NaOH or KOH, it, as
well as any other acid, becomes a salt (sodium or potassium salt), and this salt is quite soluble.
In other words, the acronym DNA usually means not an acid itself, but a salt of this acid, and it is
not a surprize that the solution of that salt is not acidic, but neutral.

Nevertheless, we prefer to say “DNA”, not “sodium 2’-deoxyribonucleoside phosphate” despite
the fact that the last name is more correct. Why?
First, the word “DNA”, although it is a jargon, is much easier to pronounce.
Second, biochemists usually deal with huge biological molecules that have ionic groups, and the
charges of these groups are compensated by small and simple inorganic ions (sodium ions,
potassium ions, chloride ions, etc). These ions are called “counter ions”, and their type usually do
not affect the overall properties of biomolecules. For example, sodium and potassium salts of
DNA have almost identical properties. That is why biochemists and molecular biologists prefer to
“forget” about these ions, and focus on large biomolecule itself. For most scientists, DNA or its
salt are pretty much the same, so they use the term “DNA” as an umbrella term for the acid
proper and for all salts it can form. Such a terminology is quite acceptable, however, one must
remember it is just a jargon, which sometimes, although very unfrequently, may lead to
problems.

10 points:
In a L'Alpagueur movie, Jean-Paul Belmondo’s hero uses a nitrous oxide, N2O (“laughing gas”)
to put mafia bosses to sleep. To do that, he drilled holes in the floor of a trailer where the mafia
meeting took place and directed a stream of laughing gas there. The gas cylinders he used for
narcotizing mafia are shown on the figure 1 (he had two). The size of the trailer can be estimated
based on the picture of its interior (Fig. 2).
Please, tell if the amount of the gas was sufficient to bring mafia bosses into an unconscious
state.
To answer this question, assume that the gas cylinders are standard cylinders used for medical
purposes, and they are full. Estimate their actual size from the attached picture. The
concentration of N2O in air that is necessary to provide a desirable effect can be googled.
If, according to your estimate, the amount of N2O is too small or too big, how many cylinders of
that size should the hero have used to achieve a desirable result?

Fig. 1. The cylinders.

Fig. 2. The trailer. For your estimate assume one half of the trailer is seen on the picture.

Hint:

English Wikipedia contains all essential information needed to answer this question. Due to its
low boiling point value, N2O is in a gaseous state in cylinders. Calculate the gas amount
assuming it obeys ideal gas laws (when the gas volume decreases twice, the pressure
doubles).

Solution:
First, if our calculations are based on several estimated parameters, the accuracy of the final
answer cannot be greater than the accuracy of least precise parameter. The parameters we
have to estimate are: the trailer’s volume, N2O concentration that is needed to obtain a desirable
effect, cylinder’s size. The size of the trailer can be estimated only approximately: if we assume it
is 5 by 2 by 2.5 meters, its volume is 25 m3, however, our estimate may be incorrect, so the
volume may range from 20 to 40 m3. The exact concentration of N2O needed to obtain a
desirable effect is also not known, most likely it is 50-70% (by volume). A possibility of leakage
due to working ventilation system in the trailer cannot be ruled out. In other words, we can speak
only about a lower estimate, i.e. about the case when the trailer has a volume of ca 20 m3, a
ventilation system is not working, all windows and doors are closed, the gas mixes with air
uniformly, and the desirable concentration is about 50%.
In that case, 10 m3 (10 000 L) of laughing gas are needed. A standard M2 type cylinder (one of
the smallest available cylinders) contains about 42 L (0.04 m3) of gas at maximal pressure (130
bar). The size of M2 cylinders is 13 x 6 cm, and the cylinders shown on the figure 2 are a little bit
longer, but their diameter is smaller, so it would be correct to assume its capacity is about 40 L.
That means two cylinders would be definitely not enough to obtain a desirable effect, and the
detective would have to bring 10000/40 = 250 cylinders on that size. That is a lower estimate.

BIOLOGY

5 points:
There are numerous examples of synchronized behavior in nature: claw waving (fiddler crabs),
synchronized respiration (honey bees), or chewing (termites). One of the famous cases is
synchronized flashing in fireflies frequently seen in Asia and North America. In the United States
it is attributed to the rover firefly (Photinus carolinus) and can be observed in early June in, for
example, Great Smoky Mountains National Park. Males emit well-synchronized periodic flashes
of bright light. It is considered to be a mating mechanism to attract females. Why do these bugs
need "dark intervals" between flashes? Interestingly, not all fireflies need dark intervals. For
example, European fireflies emit constant light with no flashes. What can be the reason for such
a difference?

Answer:

Fireflies emit light mostly to attract mates, although they also communicate for other reasons as
well, such as to defend territory and warn predators away. Larvae use their glows as warning
displays to communicate their distastefulness. In some firefly species, only one sex lights up. In
most, however, both sexes glow; often the male will fly, while females will wait in trees, shrubs
and grasses to spot an attractive male. If she finds one, she'll signal it with a flash of her own -
hence the need of the “dark interval”. Several studies have shown that female fireflies choose
mates depending upon specific male flash pattern characteristics. Higher male flash rates, as
well as increased flash intensity, have been shown to be more attractive to females.

Fireflies produce a chemical reaction inside their bodies that allows them to light up. This
type of light production is called bioluminescence. The method by which fireflies produce light is
perhaps the best known example of bioluminescence. When oxygen combines with calcium,
adenosine triphosphate (ATP) and the chemical luciferin in the presence of luciferase, a
bioluminescent enzyme, light is produced. Unlike a light bulb, which produces a lot of heat in
addition to light, a firefly's light is cold light, without a lot of energy being lost as heat.

It seems the difference between North American/Asian and European fireflies is in
communication strategy: in steady glowing species, females attract males, who are not glowing;
in flashing species, one bug flashes, and another bug flashes in response.

10 points:
Imagine that there is a rare disease which is caused by a mutation in a single autosomal gene.
It is known that the disease develops only in individuals who have two mutant alleles
(homozygots). They are unable to have children. Heterozygous (one mutant and one normal
alleles) individuals are healthy and can have children. The incidence of this disease is 1 in
100,000. Do you think that this illness will completely disappear from the population in 100
generations? Why or why not?

Answer:
There is no single correct answer to this question, but there are several lines of thought which
can bring you to one or the other conclusion.

1. The “disease” allele eliminated only when it is homozygous. Heterozygotes are still
present. The intuitive conclusion is that heterozygotes will continue to persist after 100
generations. Let’s see if we can formally demonstrate this.

Let’ s assume that the population is very large and mating happens completely
randomly. Let’ s denote “normal” and “disease” alleles of the gene as A and a. Let’s
assume that their frequencies are p and q. Then, according to Hardy-Weinberg law,
frequency of different genotypes will be:
AA – p2
Aa – 2pq
aa – q2 (1)
We know that disease appears in 1:100,000 people, which means that frequency of
genotype aa is 1/100,000 = q2. Therefore
q = √(1/100,000) = 0.00316 (2)
There are only two alleles of this gene, A and a. We know that frequency of a is q.Then
frequency of allele A is
p = 1-q (3)
We know from (2) that q = 0.00316. Then
p = 1-q = 0.99684
Now we can calculate frequency of heterozygotes Aa, which are carriers of a “disease”
allele a, using (1):
2pq = 0.00316 x 0.99684 = 0.006 (4)
which makes it 600 out of 100,000.

These calculations lead us to somewhat surprising conclusion that even when a disease
coded by a recessive allele is quite rare, the proportion of disease carriers is relatively
large. In this example, for each person with the disease there are 600 carriers.
This conclusion suggests that 100 generations might not be enough to “weed-out” allele
a from the population.
Let’s try to make formal calculations to check this.

From (1) we can take frequencies of genotypes before the selection started (first line in
the table below). We know that individuals with genotype aa do not reproduce (do not
produce gametes), so let’s write frequency of genotypes capable to reproduce (third line
in the table).
 AA Aa aa
Initial frequency p2 2pq q2

Can produce
gametes?

yes yes no

Frequency after
selection

p2 2pq 0

In the next generation frequency of allele a will be lower than in the initial generation,
since only heterozygotes Aa can produce gametes with this allele. Let’s call this new
frequency q1. It will be equal half of the frequency of heterozygotes Aa divided by total.
q1 = ½(2pq)/(p2 +2pq) (5)
After simplification and applying equitation (3)
q1 = q/(1+q) (6)
From (2), q = 0.00316.
Then q1 = 0.00315
After 100 generation of selection q100 = 0.0024.
To calculate frequencies of genotypes in 100th generations, we can apply (1):
AA – p2
Aa – 2pq = 0.0048, i.e. 479 out of 100,000 individulas
aa – q2 = 0.0000058, i.e. 1 out of 172,413 individuals

As you can see, frequency of individuals with this disease decreased less than two-fold
over the course of 100 generations.

2. The gene sequence can mutate, producing same mutated allele (allele a), therefore
maintaining presence of the “disease” allele in the population. If frequency of new
mutation is enough to replenish alleles eliminated from reproduction, the disease will not
completely disappear from the population.

Let’s make quantitative estimates.
Frequency of new mutations is quite low: ~ 10-5 - 10-6 for most loci. This means that 1 in
100,000 to 1 in 1,000,000 gametes would carry a newly mutated allele a in each
generation, which can produce additional heterozygote Aa.
As we can see from previous discussion, frequency of allele a after selection can be
described by equitation (6). Difference in allele frequency between initial generation and
generation after one round of selection is
q - q1 = ~ 0.00001 ~ 10-5.
This is comparable to the mutation rate, suggesting that mutations in this case can
maintain presence of the disease in population.

3. So far we assumed that the population is very large and that mating is random.

However, in real life populations are not that large. It is possible that frequency of alleles
change due to random factors. This phenomenon is called genetic drift.
Let’s imagine that a relatively small group of individuals, say, 1,000, went to Mars and
started colony over there. According to our previous calculations, this group may have

just 6 carrier individuals (heterozygotes Aa). It is possible that for random reasons these
individuals never reproduced, and allele a disappeared from the population.

4. It is possible that the mutation causing this disease (allele a) is in close proximity to a
beneficial variant (allele B of a different gene). Since these two variant are close to each
other on the chromosome, they will tend to be inherited together, i.e. individual with allele
a will almost always have allele B in the neighboring gene. If B is beneficial, there will be
a selective pressure toward preserving it, and this pressure will also be applied to the
allele a when it is in heterozygote.

COMPUTER SCIENCE

● You can write and compile your code here:
http://www.tutorialspoint.com/codingground.htm

● Your program should be written in Java or Python
● No GUI should be used in your program: eg., easygui in Python. All

problems in POM require only text input and output. GUI usage
complicates solution validation, for which we are also using
codingground site. Solutions with GUI will have points deducted or
won’t receive any points at all.

● Please make sure that the code compiles and runs on
http://www.tutorialspoint.com/codingground.htm before submitting it.

● Any input data specified in the problem should be supplied as user
input, not hard-coded into the text of the program.

● Submit the problem in a plain text file, such as .txt, .dat, etc.
No .pdf, .doc, .docx, etc!

5 points:

You need to write a program that analyzes the results of a Tic-Tac-Toe game.

The program should enter a Tic-Tac-Toe board as a 3x3 array of X’s and O’s from the input.

The program should print whether X won, O won, it was a draw or the position on the board is

not possible.

Solution:
Python (courtesy of Victor Turbiner):
The algorithm here is quite simple: Check every cell if it is the middle of a

connected line.

The cells can be X, O or blank.

The board size is always constant, as is the amount of cell checks, so the

algorithm's speed is O(1).

X Goes first!

Test performed on every cell (it should only be ran in the R cells as the other cells

will always return none, but it such a short algorithm there is little performance

benefit):

NRN

RRR

NRN

def test(line,col,board):

 val = board[line][col]

http://www.tutorialspoint.com/codingground.htm
http://www.tutorialspoint.com/codingground.htm

 if val == " ": return None,0 # Blank cells can't form lines.

 numWins = 0 # Count amount of connected lines, if there is > 1, it's an invalid game!

 if line == 1 and board[line+1][col] == board[line-1][col] == val: # Check for vertical

line.

 numWins += 1

 if col == 1 and board[line][col+1] == board[line][col-1] == val: # Check for horizontal

line.

 numWins += 1

 if line == 1 and col == 1: # Check for diagonal.

 if board[line+1][col+1] == board[line-1][col-1] == val:

 numWins += 1

 if board[line-1][col+1] == board[line+1][col-1] == val:

 numWins += 1

 if numWins == 0:

 return None,0

 else:

 return val,numWins

def main():

 board = []

 print("Welcome to Tic-Tac-Toe analyzer!\nPlease enter board:")

 # User Input

 for i in range(3):

 line = list(input())

 try:

 assert len(line) == 3

 for c in line:

 assert c in ["X","O"," "]

 except:

 print("Bad Input")

 return

 board.append(line)

 # Count number of Os and Xs for validation purposes.

 numX = sum(l.count("X") for l in board)

 numO = sum(l.count("O") for l in board)

 assert numX == numO or numX == numO+1, "Invalid Gameboard!" # Either there is the same

amount of Xs and Os or there is one more X than Os because X goes first

 numWins = 0

 win = None

 for i,l in enumerate(board):

 for j,c in enumerate(l):

 val,nW = test(i,j,board) # Test every cell

 if val is not None:

 numWins += nW

 win = val

 if numWins == 0: # No connected lines

 if numX+numO == 9: # Board is full

 print("It was a draw")

 else: # Unfinished game

 print("Game is unfinished")

 return

 if numWins != 1: # Too many connected lines!

 print("Invalid Game!")

 return

 print("Player",win,"won the game!")

main()

Java:
/*

You need to write a program that analyzes the results of a Tic-Tac-Toe game. The program should

enter a Tic-Tac-Toe board as a 3x3 array of
X’s and O’s from the input. The program should print whether X won, O won, it was a draw or the

position on the board is not possible.

*/

import java.util.Scanner;

public class TicTacToe {

 public static void main(String[] args) {

 //char[][] board = {{'X', 'X', 'X'},

 // {'O', 'O', 'X'},

 // {'X', 'O', 'O'}};

 //int n = board.length;

 //int m = board[0].length;

 int m = 3; // number or rows

 int n = 3; // number or columns

 char[][] board = new char[m][n];

 Scanner input = new Scanner(System.in);

 for(int i=0; i<m; i++) {

 System.out.printf("enter comma separated row %d of %d (use only X or O or space): ", i +

1, m);

 String row = input.nextLine();

 String[] s = row.split(",(?=([^\"]*\"[^\"]*\")*[^\"]*$)", -1);

 if(s.length != n)

 throw new IllegalArgumentException("wrong number of columns");

 for(int j=0; j<n; j++) {

 String st = s[j].trim();

 if(st.length()==1 || st.length()==0) {

 char ch = st.length()==1 ? st.charAt(0) : ' ';

 if(ch=='X' || ch=='O' || ch==' ')

 board[i][j] = ch;

 else

 throw new IllegalArgumentException("enter only X or O");

 }

 else

 throw new IllegalArgumentException("enter only X or O or space separated by commas");

 }

 }

 // I assume that after a person has won, the game is stopped, so I'm not checking for some

extra moves.

 // number of X's must be the same or 1 more than O's

 int countX = 0;

 int countO = 0;

 for(int i=0; i<n; i++) {

 for(int j=0; j<m; j++) {

 if(board[i][j] == 'X')

 countX++;

 else if(board[i][j] == 'O')

 countO++;

 }

 }

 if(countX!=countO && countX!=countO+1) {

 System.out.println("invalid combination");

 return;

 }

 // if X's occupy an entire line they won

 for(int i=0; i<n; i++) {

 int count = 0;

 for(int j=0; j<m; j++) { // horizontal

 if(board[i][j] == 'X')

 count++;

 }

 if(count == n) {

 System.out.println("X won");

 return;

 }

 }

 for(int j=0; j<m; j++) {

 int count = 0;

 for(int i=0; i<n; i++) { // vertical

 if(board[i][j] == 'X')

 count++;

 }

 if(count == m) {

 System.out.println("X won");

 return;

 }

 }

 int count = 0;

 for(int i=0; i<n; i++) { // main diagonal

 if(board[i][i] == 'X')

 count++;

 }

 if(count == n) {

 System.out.println("X won");

 return;

 }

 count = 0;

 for(int i=0; i<n; i++) { // the other diagonal

 if(board[n-1-i][i] == 'X')

 count++;

 }

 if(count == n) {

 System.out.println("X won");

 return;

 }

 // if O's occupy an entire line they won

 for(int i=0; i<n; i++) {

 count = 0;

 for(int j=0; j<m; j++) { // horizontal

 if(board[i][j] == 'O')

 count++;

 }

 if(count == n) {

 System.out.println("O won");

 return;

 }

 }

 for(int j=0; j<m; j++) {

 count = 0;

 for(int i=0; i<n; i++) { // vertical

 if(board[i][j] == 'O')

 count++;

 }

 if(count == m) {

 System.out.println("O won");

 return;

 }

 }

 count = 0;

 for(int i=0; i<n; i++) { // main diagonal

 if(board[i][i] == 'O')

 count++;

 }

 if(count == n) {

 System.out.println("O won");

 return;

 }

 count = 0;

 for(int i=0; i<n; i++) { // the other diagonal

 if(board[n-1-i][i] == 'O')

 count++;

 }

 if(count == n) {

 System.out.println("O won");

 return;

 }

 System.out.println("draw");

 }

}

10 points:
You have an NxN matrix, each cell of which contains an integer number (could be zero or

negative). A path in such matrix can start in any cell and then go through adjacent cells to the

right or down. A path could be of any length (obviously, the longest path would be 2*N-1 cells

long).

3 possible paths are shown in red in the diagram below:

4 3 0 7 4

4 -7 1 15 -2

0 5 8 6 0

-5 11 4 -1 1

1 4 5 3 12

A value of the path is a sum of all the integer numbers contained in the cells along the path.

For example, all the paths in red in the diagram above have value of 10. Your task is to find all

the paths in the given matrix with a specific value.

Your program should enter the matrix's dimension and all the cell values from input, as well as

enter the target path value. For each path of the given value the program should print the values

of the constituent cells.

Solution:
Python:

"""

You have an NxN matrix, each cell of which contains an integer number (could be

zero or
negative). A path in such matrix can start in any cell and then go through

adjacent cells to the
right or down. A path could be of any length (obviously, the longest path would

be 2*N-1 cells long).
A value of the path is a sum of all the integer numbers contained in the

cells along the path.
Your task is to find all the paths in the given matrix with a specific value.
Your program should enter the matrix's dimension and all the cell values from

input, as well as
enter the target path value. For each path of the given value the program should

print the values
of the constituent cells.
"""

Notes:

* Since a path can start and end anywhere, both top-down and bottom-up approaches seem

equivalent.

* This is a classical dynamical programming problem: we've got both traits:

- "sub-problem" - given a part of a path (with a calculated value) the solution is to

find

a sub-path with a specific value;

- We'll use recursion to reflect this. This approach, although simpler to write, can

quickly

end up with "stack overflow".

It can always be rewritten with a loop which as an additional bonus will run slightly

faster. Anyway, for the sake of clarity this implementation uses recursion.

- we can apply "memoization" - in our case it'll be a running sum of path value.

* Once we found path(s) with a given value we need to keep searching for continuation with

the

path value of 0.

field = [[4, 3, 0, 7, 4],

[4, -7, 1, 15, -2],

[0, 5, 8, 6, 0],

[-5, 11, 4, -1, 1],

[1, 4, 5, 3, 12]]

m = len(field)

n = len(field[0])

g = 10 # our goal (target path value)

m = int(input("enter number of rows: "))

n = int(input("enter number of columns: "))

field = [[0]*n]*m

for i in range(m):

 row = input("enter comma separated row %d of %d: " % (i+1, m))

 field[i] = [int(x) for x in row.split(',')]

 assert(len(field[i]) == n)

g = int(input("enter the target path value: "))

we'll collect found paths in this sub-graph

class Tree(object):

 def __init__(self):

 self.right = None

 self.down = None

 self.i = None

 self.j = None

i, j - current cell

v - path value so far

return true if a path found adding notes to res

def calc_path_value(field, m, n, g, i, j, v, res):

 v += field[i][j]

 if v == g:

 res.i = i

 res.j = j

 return True

 # descend to right

 x1 = False

 if j < n-1:

 res.right = Tree()

 res.i = i

 res.j = j

 x1 = calc_path_value(field, m, n, g, i, j+1, v, res.right)

 if not x1:

 del res.right

 # descend down

 x2 = False

 if i < m-1:

 res.down = Tree()

 res.i = i

 res.j = j

 x2 = calc_path_value(field, m, n, g, i+1, j, v, res.down)

 if not x2:

 del res.down

 return x1 or x2

def print_graph(node, field, cells):

 if node.i is not None:

 cells.append((node.i,node.j,field[node.i][node.j]))

 if hasattr(node,'right') and node.right:

 print_graph(node.right, field, cells)

 if hasattr(node,'down') and node.down:

 print_graph(node.down, field, cells)

if not ((hasattr(node,'right') and node.right) or (hasattr(node,'down') and node.down)): #

terminal node

 print(["(%d,%d)->%2d" % (cells[k][0],cells[k][1],cells[k][2]) for k in range(len(cells))])

 cells.pop()

def find_leaves(node, leaves):

 if hasattr(node,'right') and node.right:

 find_leaves(node.right, leaves)

 if hasattr(node,'down') and node.down:

 find_leaves(node.down, leaves)

if not ((hasattr(node,'right') and node.right) or (hasattr(node,'down') and node.down)): #

terminal node

 leaves.append((node.i, node.j))

leaves = []

for i in range(m):

 for j in range(n):

 v = 0

 root = Tree()

 found = calc_path_value(field, m, n, g, i, j, v, root)

 if found:

 print("starting from (%d,%d):" % (i,j))

 print_graph(root, field, [])

 print()

 # now that we found the shortest chains we need to check if there are continuations with

 # sub-sum 0; there can be multiple of these

 # we don't need to check all the cells, just start where the previous path ends

 # collect them into the list: leaves

 find_leaves(root, leaves)

visited = [[0]*n]*m # to avoid cycles and not to duplicate work

while len(leaves):

 i,j = leaves.pop(0)

 if not visited[i][j]:

 visited[i][j] = 1

 v = 0

 root = Tree()

 found = calc_path_value(field, m, n, 0, i, j, v, root)

 if found:

 print("starting from (%d,%d):" % (i,j))

 print_graph(root, field, [])

 print()

 # there can be more 0 value paths

 leaves2 = []

 find_leaves(root, leaves2)

 leaves += leaves2

print("end.")

Java:
/*

You have an NxN matrix, each cell of which contains an integer number (could

be zero or
negative). A path in such matrix can start in any cell and then go through

adjacent cells to the
right or down. A path could be of any length (obviously, the longest path

would be 2*N-1 cells long).
A value of the path is a sum of all the integer numbers contained in the

cells along the path.
Your task is to find all the paths in the given matrix with a specific

value.

Your program should enter the matrix's dimension and all the cell values from

input, as well as
enter the target path value. For each path of the given value the program

should print the values
 of the constituent cells.

 Notes:

* Since a path can start and end anywhere, both top-down and bottom-up approaches seem

equivalent.

 * This is a classical dynamical programming problem: we've got both traits:

- "sub-problem" - given a part of a path (with a calculated value) the solution is to

find a sub-path with a specific value;

- We'll use recursion to reflect this. This approach, although simpler to write,

can quickly end up with "stack overflow".

It can always be rewritten with a loop which as an additional bonus will run

slightly faster. Anyway, for the sake of

 clarity this implementation uses recursion.

 - we can apply "memorization" - in our case it'll be a running sum of path value.

* Once we found path(s) with a given value we need to keep searching for continuation

with the path value of 0.

*/

import java.util.ArrayList;

import java.util.Scanner;

class Tree {

 int i, j;

 Tree right;

 Tree down;

}

class Pair<T> {

 T i, j;

 Pair(T i, T j) {

 this.i = i;

 this.j = j;

 }

}

class Triple<T> {

 T i, j, k;

 Triple(T i, T j, T k) {

 this.i = i;

 this.j = j;

 this.k = k;

 }

}

public class PathSum {

 // i, j - current cell

 // v - path value so far

 // return true if a path found adding notes to res

private static boolean calc_path_value(int[][] field, int m, int n, int g, int i, int j, int

v, Tree res) {

 v += field[i][j];

 if(v == g) {

 res.i = i;

 res.j = j;

 return true;

 }

 // descend to right

 boolean x1 = false;

 if(j < n-1) {

 res.right = new Tree();

 res.i = i;

 res.j = j;

 x1 = calc_path_value(field, m, n, g, i, j + 1, v, res.right);

 if(!x1)

 res.right = null;

 }

 // descend down

 boolean x2 = false;

 if(i < m-1) {

 res.down = new Tree();

 res.i = i;

 res.j = j;

 x2 = calc_path_value(field, m, n, g, i + 1, j, v, res.down);

 if(!x2)

 res.down = null;

 }

 return x1 || x2;

 }

 private static void print_graph(Tree node, int[][] field, ArrayList<Triple<Integer>> cells) {

 if(node != null)

 cells.add(new Triple<>(node.i, node.j, field[node.i][node.j]));

 if(node.right != null)

 print_graph(node.right, field, cells);

 if(node.down != null)

 print_graph(node.down, field, cells);

 if(node.right==null && node.down==null) { // terminal node

 for(Triple<Integer> cell : cells)

 System.out.printf("(%d,%d)->%2d, ", cell.i, cell.j, cell.k);

 System.out.println();

 }

 cells.remove(cells.size()-1);

 }

 private static void find_leaves(Tree node, ArrayList<Pair<Integer>> leaves) {

 if(node.right != null)

 find_leaves(node.right, leaves);

 if(node.down != null)

 find_leaves(node.down, leaves);

 if(node.right==null && node.down==null) // terminal node

 leaves.add(new Pair<>(node.i, node.j));

 }

 public static void main(String[] args) {

 int[][] field = {{ 4, 3, 0, 7, 4},

 { 4, -7, 1, 15, -2},

 { 0, 5, 8, 6, 0},

 {-5, 11, 4, -1, 1},

 { 1, 4, 5, 3, 12}};

 //int m = field.length;

 //int n = field[0].length;

 //int g = 10; // our goal (target path value)

 Scanner input = new Scanner(System.in);

 System.out.print("enter number of rows: ");

 int m = Integer.parseInt(input.nextLine());

 System.out.print("enter number of columns: ");

 int n = Integer.parseInt(input.nextLine());

 System.out.print("enter the target path value: ");

 int g = Integer.parseInt(input.nextLine());

 for(int i=0; i<m; i++) {

 System.out.printf("enter comma separated row %d of %d: ", i + 1, m);

 String row = input.nextLine();

 String[] s = row.split(",(?=([^\"]*\"[^\"]*\")*[^\"]*$)", -1);

 if(s.length != n)

 throw new IllegalArgumentException("wrong number of columns");

 for(int j=0; j<n; j++) {

 String st = s[j].trim();

 field[i][j] = Integer.parseInt(st);

 }

 }

 ArrayList<Pair<Integer>> leaves = new ArrayList<>();

 for(int i=0; i<m; i++) {

 for(int j=0; j<n; j++) {

 int v = 0;

 Tree root = new Tree();

 boolean found = calc_path_value(field, m, n, g, i, j, v, root);

 if(found) {

 System.out.printf("starting from (%d,%d):\n", i, j);

 print_graph(root, field, new ArrayList<>());

 System.out.println();

// now that we found the shortest chains we need to check if there are continuations

with sub - sum 0

 // there can be multiple of these

 // we don't need to check all the cells, just start where the previous path ends

 // collect them into the list: leaves

 find_leaves(root, leaves);

 }

 }

 }

 System.out.println("0 paths:");

boolean[][] visited = new boolean[m][n]; // to avoid cycles and not to duplicate work // by

default initialized to false

 while(leaves.size() > 0) {

 Pair<Integer> pair = leaves.remove(0);

 int i = pair.i;

 int j = pair.j;

 if(!visited[i][j]) {

 visited[i][j] = true;

 int v = 0;

 Tree root = new Tree();

 boolean found = calc_path_value(field, m, n, 0, i, j, v, root);

 if(found) {

 System.out.printf("starting from (%d,%d):\n", i, j);

 print_graph(root, field, new ArrayList<>());

 System.out.println();

 // there can be more 0 value paths

 ArrayList<Pair<Integer>> leaves2 = new ArrayList<>();

 find_leaves(root, leaves2);

 leaves.addAll(leaves2);

 }

 }

 }

 System.out.println("end.");

 }

}

